Ir al contenido

Documat


A reduction formulafor length-two polylogarithms and some applications

  • Matilde N. Lalín [1] ; Jean Sébastien Lechasseur [2]
    1. [1] University of Montreal

      University of Montreal

      Canadá

    2. [2] Collège André-Grasset, Canadá
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 59, Nº. 2, 2018, págs. 285-309
  • Idioma: inglés
  • DOI: 10.33044/revuma.v59n2a05
  • Enlaces
  • Resumen
    • We use shuffle and stuffle relations to give a simple proof of a reduction formula for length-two multiple polylogarithms evaluated in complex parameters of absolute value 1 in terms of a finite sum of products of lengthone polylogarithms. This result was originally due to Nakamura and recently reproved by Panzer by different methods. This generalises results of Borwein and Girgensohn for alternating Euler sums and for multiple zeta values twisted by fourth roots of unity by the first author. We also explore implications for other colored multiple zeta values and present some applications to Mahler measure and Feynman diagrams.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno