Ir al contenido

Documat


Some properties of the space of regular operators on atomic Banach lattices

  • Autores: Qingying Bu, Yongjin Li, Xiaoping Xue
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 62, Fasc. 2, 2011, págs. 131-137
  • Idioma: inglés
  • DOI: 10.1007/s13348-010-0007-7
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let {{\mathcal L}^r(E,X)} denote the space of regular linear operators from a Banach lattice E to a Banach lattice X. In this paper, we show that if E is a separable atomic Banach lattice, then {{\mathcal L}^r(E,X)} is reflexive if and only if both E and X are reflexive and each positive linear operator from E to X is compact; moreover, if E is a separable atomic Banach lattice such that E and E* are order continuous, then {{\mathcal L}^r(E,X)} has the Radon–Nikodym property (respectively, is a KB-space) if and only if X has the Radon–Nikodym property (respectively, is a KB-space) and each positive linear operator from E to X is compact.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno