Ir al contenido

Documat


On some Chebyshev type inequalities for the complex integral

  • Dragomir, Silvestru Sever [1]
    1. [1] Victoria University, College of Engineering and Science, Melbourne, Australia & University of the Witwatersrand, School of Computer Science and Applied Mathematics, Johannesburg, South Africa. &
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 37, Nº. 2, 2019 (Ejemplar dedicado a: Revista Integración, temas de matemáticas), págs. 307-317
  • Idioma: inglés
  • DOI: 10.18273/revint.v37n2-2019006
  • Títulos paralelos:
    • Sobre algunas desigualdades tipo Chebyshev para la integral compleja
  • Enlaces
  • Resumen
    • español

      Sean f y g funciones continuas sobre γ, siendo γ ⊂ C un caminosuave por partes parametrizado por z (t) , t ∈ [a, b] con z (a) = u y z (b) = w,w 6= u, y el funcional de Chebyshev complejo definido por

    • English

      Assume that f and g are continuous on γ, γ ⊂ C is a piecewisesmooth path parametrized by z (t) , t ∈ [a, b] from z (a) = u to z (b) = w withw 6= u, and the complex Chebyshev functional is defined by

  • Referencias bibliográficas
    • [1] Alomari M.W., “A companion of Grüss type inequality for Riemann-Stieltjes integral and applications”, Mat. Vesnik 66 (2014), No. 2, 202–212.
    • [2] Andrica D. and Badea C., “Grüss’ inequality for positive linear functionals”, Period. Math. Hungar. 19 (1988), No. 2, 155–167.
    • [3] Baleanu D., Purohit S.D. and Uçar F., “On Grüss type integral inequality involving the Saigo’s fractional integral operators”, J. Comput....
    • [4] Cerone P., “On a Čebyšev-type functional and Grüss-like bounds”, Math. Inequal. Appl. 9 (2006), No. 1, 87–102.
    • [5] Cerone P. and Dragomir S.S., “A refinement of the Grüss inequality and applications”, Tamkang J. Math., 38 (2007), No. 1, 37–49.
    • [6] Cerone P. and Dragomir S.S., “Some new Ostrowski-type bounds for the Čebyšev functional and applications”, J. Math. Inequal. 8 (2014),...
    • [7] Cerone P., Dragomir S.S. and Roumeliotis J., “Grüss inequality in terms of -seminorms and applications”, Integral Transforms Spec. Funct....
    • [8] Chebyshev P.L., “Sur les expressions approximatives des intègrals dèfinis par les outres prises entre les même limites”, Proc. Math. Soc....
    • [9] Cheng X.L. and Sun J., “A note on the perturbed trapezoid inequality”, JIPAM. J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Art. 29, 7...
    • [10] Dragomir S.S., “A generalization of Grüss’s inequality in inner product spaces and applications”, J. Math. Anal. Appl. 237 (1999), No....
    • [11] Dragomir S.S., “A Grüss’ type integral inequality for mappings of r-Hölder’s type and applications for trapezoid formula”, Tamkang J....
    • [12] Dragomir S.S., “Some integral inequalities of Grüss type”, Indian J. Pure Appl. Math. 31 (2000), No. 4, 397–415.
    • [13] Dragomir S.S., “Integral Grüss inequality for mappings with values in Hilbert spaces and applications”, J. Korean Math. Soc. 38 (2001),...
    • [14] Dragomir S.S. and Fedotov I.A., “An inequality of Grüss’ type for Riemann-Stieltjes integral and applications for special means”, Tamkang...
    • [15] Dragomir S.S. and Gomm I., “Some integral and discrete versions of the Grüss inequality for real and complex functions and sequences”,...
    • [16] Fink A.M., “A treatise on Grüss’ inequality”, in Analytic and Geometric Inequalities and Applications (eds. RassiasHari T. and Srivastava...
    • Grüss G., “Über das Maximum des absoluten Betrages von 1/b−a Integral de a-b de f(x)g(x)dx −1/(b−a)2 Integral de a-b de f(x)dx por integral...
    • [18] Jankov Maširević D. and Pogány T.K., “Bounds on Čebyšev functional for C'[0, 1] function class”, J. Anal. 22 (2014), 107–117.
    • [19] Liu Z., “Refinement of an inequality of Grüss type for Riemann-Stieltjes integral”, Soochow J. Math. 30 (2004), No. 4, 483–489.
    • [20] Liu Z., “Notes on a Grüss type inequality and its application”, Vietnam J. Math. 35 (2007), No. 2, 121–127.
    • [21] Lupas A., “The best constant in an integral inequality”, Mathematica (Cluj, Romania), 15 (38) (1973), 219–222.
    • [22] Mercer A.Mc.D. and Mercer P.R., “New proofs of the Grüss inequality”,Aust. J. Math. Anal. Appl. 1 (2004), No. 2, Art. 12, 6 pp.
    • [23] Minculete N. and Ciurdariu L., “A generalized form of Grüss type inequality and other integral inequalities”, J. Inequal. Appl. 2014,...
    • [24] Ostrowski A.M., “On an integral inequality”, Aequationes Math. 4 (1970), No. 3, 358-373.
    • [25] Pachpatte B.G., “A note on some inequalities analogous to Grüss inequality”, Octogon Math. Mag. 5 (1997), No. 2, 62–66.
    • [26] Pečarić J. and Ungar Š., “On a inequality of Grüss type”, Math. Commun. 11 (2006), No. 2, 137–141.
    • [27] Sarikaya M. Z. and Budak H., “An inequality of Grüss like via variant of Pompeiu’s mean value theorem”, Konuralp J. Math. 3 (2015), No....
    • [28] Ujević N., “A generalization of the pre-Grüss inequality and applications to some quadrature formulae”, JIPAM. J. Inequal. Pure Appl....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno