Ir al contenido

Documat


Spline collocation approach to study Brachistochrone problem.

  • Shah, Pinky M. [1] ; Prajapati, Jyotindra C. [2]
    1. [1] Veer Narmad South Gujarat University

      Veer Narmad South Gujarat University

      India

    2. [2] Sardar Patel University

      Sardar Patel University

      India

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 2, 2019, págs. 353-362
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172019000200353
  • Enlaces
  • Resumen
    • In this paper authors discussed a problem of quickest descent, the Brachistochrone curve. Spline collocation method is used to solve the non-linear boundary value problem. The numerical results obtained are compared with the transformation method to show effectiveness and accuracy of this method.

  • Referencias bibliográficas
    • Aravind P. K., Simplified Approach to Brachistochrone Problem, Amer. J. Phys., 49 (9), pp. 884-886, (1981).
    • Ashby N., Brittin W. E., Love W. F., Wyss W., Brachistochrone with Coulomb Friction, Amer. J. Phys., 43 (10), pp. 902-906, (1975).
    • Bickley W. G., Piecewise Cubic Interpolation and Two-Point Boundary Problems, The Computer Journal, 11, pp. 206-208, (1968).
    • Blue J. L., Spline Function Methods for Nonlinear Boundary Value Problems, Communications of the ACM, 12 (6), pp. 327-330, (1969).
    • Covic V., Veskovic M. Brachistochrone on a Surface with Coulomb Friction, Int. J. of Nonlinear Mechanics, 43, pp. 437-450, (2008).
    • Deboor C., Bicubic splines interpolation, J. Math. Phys., 41, pp. 212-218, (1962).
    • Denman H. H., Remarks on Brachistochrone Tautochrone Problem, Amer. J. Phys., 53 (3), pp. 224-227, (1985).
    • Dunham, William. Journey Through Genius, NewYork: Penguin Books, 1991.
    • Erlichson H.,Johann Bernoullis Brachistochrone Solution Using Fermats Principle of Least Time, Eur. J. Phys., 20, pp. 299-304, (1999).
    • Farina C., Bernoulli´s Method for Relativistic Brachistochrones, J. Phys. A: Math. Gen., 20, pp. L57-L59, (1987).
    • Gelfand and Fomin. I. M., S. V. Calculus of Variations. Englewood Cliffs, NJ: Prentice-Hall,Inc., 1963.
    • Goldstein. H. F., Bender. C. M., Relativistic Brachistochrone, J.Math.Phys.,27, pp. 507-511, (1986).
    • Hayen J. C.,Brachistochrone with Coulomb Friction, Int. J of NonLinear Mechanics 40, pp. 1057-1075, (2005).
    • Palmieri, Duzur The Brachistochrone Problem a New Twist to an Old Problem, Undergraduate Honors Thesis, Millers ville University of PA, (1996).
    • Parnovsky, A. S. Some Generalizations of the Brachistochrone Problem, Acta Physica Polonica, 93, (1998).
    • Scarpello G. M., Ritelli D., Relativistic Brachistochrone under Electric or Gravitational Uniform Field, Z. Angew. Math. Mech., 86, (9), pp....
    • Sussmann and Willem: 300 Years of optimal control: From the Brachistochrone to the Maximum principle. Optimal-Control
    • Tee G., Isochrones and Brachistochrones, Neural,ParallelSci.Comput., 7, pp. 311-342, (1999).
    • Vander Heijden. A. M. A., Diepstraten J. D., On the Brachistochrone with Dry Friction, Int. J. Non-Linear Mech., 10, pp. 97-112, (1975).
    • Venezian G., Terrestrial Brachistochrone, Amer. J. Phys., 34 (8), 701, (1966).
    • Vratanar B., Saje M., On the analytical solution of the Brachistochrone Problem in a Neo conservative Field, Int. J. Non-Linear Mech., 33...
    • Yamani H. A., Mulhem A. A., A Cylindrical Variation on the Brachistochrone Problem, Amer. J. Phys., 56 (5), pp. 467-469, (1988).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno