Ir al contenido

Documat


Total domination and vertex-edge domination in trees.

  • Y. B., Venkatakrishnan [1] ; Hari, Naresh Kumar [1] ; Chidambaram, Natarajan [1]
    1. [1] SASTRA Deemed University.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 2, 2019, págs. 295-304
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172019000200295
  • Enlaces
  • Resumen
    • A vertex v of a graph G = (V,E) is said to ve-dominate every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set if every edge of E is ve-dominated by at least one vertex of S. The minimum cardinality of a vertex-edge dominating set of G is the vertex-edge domination number γve(G) . In this paper we prove (γt(T)−ℓ+1)/2 ≤ γve(T) ≤(γt(T)+ℓ−1)/2 and characterize trees attaining each of these bounds.

  • Referencias bibliográficas
    • R. Boutrig, M. Chellali, T. W. Haynes and S. T. Hedetniemi, Vertexedge domination in graphs. Aequat. Math., 90, pp. 355—366, (2016).
    • M. A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics). 2013. ISBN: 978-1-4614-6524-9 (Print) 978-1-4614-6525-6...
    • B. Krishnakumari, Y. B. Venkatakrishnan and M. Krzywkowski, Bounds on the vertex-edge domination number of a tree. C. R. Acad. Sci. Paris,...
    • J. R. Lewis, S. T. Hedetniemi, T. W. Haynes and G. H. Fricke, Vertexedge domination. Util. Math. 81, pp. 193—213, (2010).
    • J. W. Peters. Theoretical and algorithmic results on domination and connectivity. Ph.D. Thesis, Clemson University, (1986).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno