Ir al contenido

Documat


Further inequalities for log-convex functions related to Hermite-Hadamard result.

  • Dragomir, S. S. [1]
    1. [1] Victoria University

      Victoria University

      Australia

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 2, 2019, págs. 267-293
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172019000200267
  • Enlaces
  • Resumen
    • Some unweighted and weighted inequalities of Hermite-Hadamard type for log-convex functions defined on real intervals are given.

  • Referencias bibliográficas
    • M. Alomari and M. Darus, The Hadamard’s inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2, No. 13-16, pp. 639—646, (2008).
    • M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3, No. 37-40, pp. 1965—1975, (2008).
    • G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135, No. 3, pp. 175—189, (2002).
    • G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335, pp. 1294—1308, (2007).
    • N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro,and A. Sofo, Ostrowski type inequalities for functions whose modulus of the derivatives...
    • E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54, pp. 439—460, (1948).
    • M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl....
    • W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ....
    • W. W. Breckner and G.Orbán, Continuity properties of rationally s-convex mappings with values in an ordered topological linear space. Universitatea...
    • P.Cerone andS. S. Dragomir , Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, Handbook of Analytic Computational...
    • P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the Riemann-Stieltjes integrals, in Advances in Statistics Combinatorics...
    • P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio...
    • G. Cristescu, Hadamard type inequalities for convolution of h-convex functions. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity...
    • S. S. Dragomir, Some remarks on Hadamard’s inequalities for convex functions, Extracta Math., 9 (2), pp. 88-94, (1994).
    • S. S. Dragomir, Refinements of the Hermite-Hadamard integral inequality for log-convex functions, Austral. Math. Soc. Gaz. 28, No. 3, pp....
    • S. S. Dragomir, Ostrowski’s inequality for monotonous mappings and applications, J. KSIAM, 3 (1), pp. 127-135, (1999).
    • S. S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38, pp. 33-37, (1999).
    • S. S. Dragomir, On the Ostrowski’s inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., 7, pp. 477-485, (2000).
    • S. S. Dragomir, On the Ostrowski’s inequality for mappings of bounded variation and applications, Math. Ineq. & Appl., 4 (1), pp. 33-40,...
    • S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral Rab f (t) du (t) where f is of Hölder type and u is of bounded...
    • S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure & Appl. Math., 3(5), Art. 68, (2002).
    • S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications...
    • S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications...
    • S. S. Dragomir, An inequality improving the second HermiteHadamard inequality for convex functions defined on linear spaces and applications...
    • S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, 16 (2), pp. 373-382, (2003).
    • S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, (2012). x+112...
    • S. S. Dragomir, Some new inequalities of Hermite-Hadamard type for GA-convex functions, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art 33....
    • S. S. Dragomir, New inequalities of Hermite-Hadamard type for logconvex functions, Preprint RGMIA Res. Rep. Coll. 18, (2015), Art 42. [http://rgmia.org/papers/v18/v18a42.pdf].
    • S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski inequality for mappings of Hölder type and applications...
    • S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for sconvex functions in the second sense. Demonstratio Math. 32, No. 4, pp....
    • S. S. Dragomir and S. Fitzpatrick,The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33, No. 1, pp....
    • S. S. Dragomir and B. Mond, Integral inequalities of Hadamard’s type for log-convex functions, Demonstratio Math., 31 (2), pp. 354-364, (1998).
    • S. S. Dragomir and C. E. M. Pearce, On Jensen’s inequality for a class of functions of Godunova and Levin. Period. Math. Hungar., 33, No....
    • S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard’s inequality, Bull. Austral. Math. Soc. 57, pp. 377-385, (1998).
    • S. S. Dragomir and C. E. M. Pearce, Selected Topics on HermiteHadamard Inequalities and Applications, RGMIA Monographs, Victoria University,...
    • S. S. Dragomir, J. Pečarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21, No. 3, pp. 335—341, (1995).
    • S. S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher,...
    • S. S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in L1−norm and applications to some special means and to some numerical quadrature...
    • S. S. Dragomir and S. Wang, Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and some numerical...
    • S. S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in L p−norm and applications to some special means and to some numerical...
    • A. El Farissi, Simple proof and refeinment of Hermite-Hadamard inequality, J. Math. Ineq. 4, No. 3, pp. 365—369, (2010).
    • L. Fejér, Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss. 24, pp. 369-390, (1906). (In Hungarian).
    • P. M. Gill, C. E. M. Pearce and J. Pečarić, Hadamard’s inequality for rconvex functions, Journal of Mathematical Analysis and Applications....
    • E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions....
    • H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48, No. 1, pp. 100—111, (1994).
    • E. Kikianty and S. S. Dragomir, Hermite-Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space,...
    • U. S. Kirmaci, M. Klaričić Bakula, M. E Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193,...
    • M. A. Latif, On some inequalities for h-convex functions. Int. J. Math. Anal. (Ruse) 4, No. 29-32, pp. 1473—1482, (2010).
    • D. S. Lacković and I. B. Lacković, Hermite and convexity, Aequationes Math. 28, pp. 229—232, (1985).
    • D. S. Lacković and J. E. Pečarić, Note on a class of functions of Godunova and Levin. C. R. Math. Rep. Acad. Sci. Canada 12, No. 1, pp. 33—36,...
    • M. A. Noor, K. I. Noor and M. U. Awan, Some inequalities for geometrically-arithmetically h-convex functions, Creat. Math. Inform. 23, No....
    • C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240, No. 1, pp....
    • J. E. Pečarić and S. S. Dragomir, On an inequality of Godunova-Levin and some refinements of Jensen integral inequality. Itinerant Seminar...
    • J. Pečarić and S. S. Dragomir, A generalization of Hadamard’s inequality for isotonic linear functionals, Radovi Mat. (Sarajevo) 7, pp. 103—107,...
    • M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova Levin-Schur class of functions. Math. Inequal. Appl. 12, No. 4, pp. 853—862,...
    • M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for h-convex functions. J. Math. Inequal. 2, No. 3, pp. 335—341,...
    • E. Set, M. E. Özdemir and M. Z. Sarıkaya, New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications....
    • M. Z. Sarikaya, E. Set and M. E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions. Acta Math. Univ. Comenian....
    • W. T. Sulaiman, Refinements to Hadamard’s inequality for log-convex functions. Applied Mathematics, 2, pp. 899-903, (2011).
    • M. Tunç, Ostrowski-type inequalities via h-convex functions with applications to special means. J. Inequal. Appl., 326, (2013).
    • S. Varošanec, On h-convexity. J. Math. Anal. Appl. 326, No. 1, pp. 303—311, (2007).
    • X.-M. Zhang, Y.-M. Chu and X.-H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its application, Journal of Inequalities...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno