Ir al contenido

Documat


Further results on 3-product cordial labeling.

  • Jeyanthi, P. [1] ; Maheswari, A. [2] ; Vijayalakshmi, M. [3]
    1. [1] Govindammal Aditanar College for Women.
    2. [2] Kamaraj College of Engineering and Technology.
    3. [3] Dr. G. U. Pope College of Engineering.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 2, 2019, págs. 191-202
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172019000200191
  • Enlaces
  • Resumen
    • A mapping f : V (G) → {0, 1, 2} is called 3-product cordial labeling if |vf(i) − vf(j)| ≤ 1 and |ef(i) − ef(j)| ≤ 1 for any i, j ∈ {0, 1, 2}, where vf(i) denotes the number of vertices labeled with i, ef(i) denotes the number of edges xy with f(x)f(y) ≡ i(mod 3). A graph with 3-product cordial labeing is called 3-product cordial graph. In this paper we establish that switching of an apex vertex in closed helm, double fan, book graph K1,n × K2 and permutation graph P (K2 + mK1, I) are 3-product cordial graphs.

  • Referencias bibliográficas
    • I. Cahit, Cordial Graphs: A weaker version of graceful and harmonious graphs, Ars Combinatoria, 23, pp. 201-207, (1987).
    • Joseph A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, (2018) # DS6.
    • F. Harary, Graph Theory, Addision Wesley, Massachusetts, (1972).
    • P. Jeyanthi and A. Maheswari, 3-product cordial labeling of some graphs, International Journal on Mathematical Combinatorics, 1, pp. 96-105,...
    • P. Jeyanthi and A. Maheswari, 3-product cordial labeling, SUT Journal of Mathematics, 48, pp. 231-240, (2012).
    • P. Jeyanthi and A. Maheswari, 3-product cordial labeling of star graphs, Southeast Asian Bulletin of Mathematics, 39, pp. 429-437, (2015).
    • P. Jeyanthi and A. Maheswari, Some results on 3-product cordial labeling, Utilitas Mathematica, 99, pp. 215-229, March, (2016).
    • P. Jeyanthi, A. Maheswari and M. Vijayalakshmi, 3-Product cordial labeling of some snake graphs, Proyecciones Journal of Mathematics, 38(1),...
    • R. Ponraj, M. Sivakumar and M. Sundaram, k-product cordial labeling of graphs, Int.J. Contemp. Math. Sciences, 7, (15), pp. 733-742, (2012).
    • M. Sundaram, R. Ponraj and S. Somasundaram, Product Cordial labeling of graphs, Bulletin of Pure and Applied Sciences, 23E(1), pp. 155-163,...
    • M. Sundaram, R. Ponraj and S. Somasundaram, EP -cordial labeling of graphs, Varahmihir Journal of Mathematical Sciences, 7(1), pp. 183-194,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno