Ir al contenido

Documat


Efficient algorithms for constructing D- and I-optimal exact designs for linear and non-linear models in mixture experiments

  • Autores: Raúl Martín Martín Árbol académico, Irene García Camacha Gutiérrez Árbol académico, Bernard Torsney
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 43, Nº. 1, 2019, págs. 163-190
  • Idioma: inglés
  • DOI: 10.2436/20.8080.02.84
  • Enlaces
  • Resumen
    • The problem of finding optimal exact designs is more challenging than that of approximate optimal designs. In the present paper, we develop two efficient algorithms to numerically construct exact designs for mixture experiments. The first is a novel approach to the well-known multiplicative algorithm based on sets of permutation points, while the second uses genetic algorithms. Using (i) linear and non-linear models, (ii) D- and I-optimality criteria, and (iii) constraints on the ingredients, both approaches are explored through several practical problems arising in the chemical, pharmaceutical and oil industry.

  • Referencias bibliográficas
    • Aitchison, J. and Bacon-Shone, J. (1984). Log contrast models for experiments with mixtures. Biometrika, 2, 323–330.
    • Atkinson, A. and Donev, A. (1989). The construction of exact D-optimum experimental designs with application to blocking response suface designs....
    • Atkinson, A., Donev, A. and Tobias, R. (2007). Optimum Experimental Designs with SAS. Oxford Statistical Science Series. United Kingdom: Oxford...
    • Becker, N. (1968). Models for the response of a mixture. Journal of the Royal Statistical Society, 1, 107– 112.
    • Borkowski, J. (2003). Using genetic algorithm to generate small exact response surface designs. Journal of Probability and Statistical Science,...
    • Brown, L., Donev, A. and Bissett, A.C. (2015). General blending models for data from mixtures experiments. Technometrics, 4, 449–456.
    • Chan, L. (1992). D-optimal design for a quadratic log contrast model for experiments with mixtures. Communications in Statistics. Theory and...
    • Chan, L. and Guan, Y. (1998). Design in mixture models with inverse terms for two components. Private comunication.
    • Chan, L. and Guan, Y. (2001). Aand D-optimal designs for a log contrast model for experiments with mixtures. Journal of Applied Statistics,...
    • Chernoff, H. (1953). Locally optimal designs for estimating parameters. The Annals of Mathematical Statistics, 24, 582–602.
    • Choisnard, L., Géze, A., Bigan, M., Putaux, J. and Wouessidjewe, D. (2005). Efficient size control of amphiphilic cyclodextrin nanoparticles...
    • Coetzer, R. and Focke, W. (2010). Optimal designs for estimating the parameters in weighted power-meanmixture models. Chemometrics, 24, 34–42.
    • Coetzer, R. and Haines, L. (2017). The construction of Dand I-optimal designs for mixture experiments with linear constraints on the components....
    • Cornell, J. (2002). In Experiments with Mixtures, New York. Wiley.
    • Darroch, J. and Waller, J. (1985). Additivity and interaction in three component experiments with mixtures. Biometrika, 1, 153–163.
    • Dean, A., Morris, M., Stufken, J. and Binghman (2015). Handbook of Design and Analysis of Experiments.
    • DeGroot, M. (1970). Optimal Statistical Decisions. New York: McGraw Hill.
    • Diaz-Gomez, P. A. and Hougen, D.F. (2007). Initial population for genetic algorithms: A metric approach. In H.R. Arabnia, J.Y. Yang, and M.Q....
    • Draper, N. and John, R. (1977). A mixtures models with inverse term. Technometrics, 1B, 37–46.
    • Draper, N. and Pukelsheim, F. (1997). Mixture models based on homogeneous polynomials. Journal of Statististical Planing and Inference, 71,...
    • Draper, N. and Pukelsheim, F. (1999). Kiefer ordering of simplex designs for firstand second-degree mixture models. Journal of Statistical...
    • Eiben, A., Hinterding, R. and Michalewicz, Z. (1999). Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation,...
    • Fedorov, V. (1972). In Theory of optimal experiments, New York. Academic Press.
    • Focke, W., Sandrock, C. and Kok, S. (2007). Weighted-power-mean mixture model: Empirical mixing laws for liquid viscosity. Industrial and...
    • Galil, Z. and Kiefer, J. (1977). Comparison of simplex designs for quadratic mixture models. Technometrics, 4, 445–453.
    • Garcı́a-Camacha Gutiérrez, I. (2017). Diseño óptimo de experimentos para modelos de mezclas aplicados en la ingenierı́a y las ciencias...
    • Goos, P., Jones, B. and Syafitri, U. (2016). I-optimal design of mixture experiments. Journal of the American Statistical Association, 111,...
    • Goos, P. and Syafitri, U. (2014). V-optimal mixture designs for the qth degree model. Chemometrics and Intellingent Laboratory Systems, 136,...
    • Grunberg, L. and Nissan, A. (1949). Mixing law for viscosity. Nature, 164, 799.
    • Harman, R., Bachrata, A. and Filová, L. (2016). Heuristic construction of exact experimental designs under multiple resource constraints....
    • Harman, R. and Filová, L. (2014). Computing efficient exact designs of experiments using integer quadratic programming. Computational Statistics...
    • Heredia-Langer, A., Carlyle, W., Montgomery, D., Borror, C. and Runger, G. (2003). Genetic algorithms for the construction of D-optimal designs....
    • Jerirani, Z., Jan, B., Ali, B., Noor, I., Hwa, S. and Saphanuchart, W. (2012). The optimal mixture design of experiments: Alternative method...
    • Kiefer, J. (1961). Optimal design in regression problems. The Annals of Mathematical Statististics, 2, 298–325.
    • Lim, Y. (1990). D-optimal design for cubic polynomial regression on the q-simplex. Journal of Statistical Planning and Inference, 25, 141–152.
    • Limmuun, W., Borkowski, J. and Chomtee, B. (2013). Using a genetic algorithm to generate D-optimal design for mixture experiments. Quality...
    • Madgulkar, A., Bhalekar, M., Padalkar, R. and Shaikh, M. (2013). Optimization of carboxymethyl-xyloglucan-based tramadol matrix tablets using...
    • Martı́n-Martı́n, R. and Garcı́a-Camacha Gutiérrez, I. (2015). Combined algorithm to compute D-optimal designs. Journal of Computational...
    • McLean, R. and Anderson, V. (1966). Extreme vertices design of mixture experiments. Technometric, 3, 447–454.
    • Meyer, R. and Nachtsheim, C. (1995). The coordinate-exchange algorithm for constriction exact optimal experimental designs. Technometrics,...
    • Mikaeili, F. (1989). D-optimal design for cubic without 3-way effect on the simplex. Journal of Statistical Planning and Inference, 21, 107–115.
    • Mitchell, T. (1974). An algorithm for construction of D-optimal experimental designs. Technometrics, 16, 203–210.
    • Piepel, G., Cooley, S.K. and Jones, B. (2005). Construction of a 21-component layered mixture experiment design using a new mixture coordinate-exchange...
    • Pukelsheim, F. (2006). Optimal Design of Experiments. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics.
    • Pukelsheim, F. and Rieder, F. (1992). Efficient rounding of approximate designs. Biometrika, 79, 763 – 770.
    • R Core Team (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
    • Saleh, M. and Pan, R. (2016). A clustering-based coordinate exchange algorithm for generating g-optimal experimental designs. Journal of Statistical...
    • Scheffé, H. (1958). Experiments with mixtures. Journal of the Royal Statistical Society, B, 344–369.
    • Scheffé, H. (1963). The simplex-centroid design for experiments with mixtures. Journal of the Royal Statistical Society, 2B, 235–263.
    • Silvey, S., Titterington, D. and Torsney, B. (1978). An algorithm for optimal designs on a finite design space. Communications in Statistic,...
    • Sinha, B., Mandal, N., Manisha, P. and Das, P. (2014). In Optimal mixture experiments, Lecture Notes in Statistics. Springer.
    • Snee, R. (1979). Experimental designs for mixture systems with multicomponent constrains. Communications in Statictics. Theory and Methods,...
    • Snee, R. and Marquardt, D. (1974). Extreme vertices designs for linear mixture models. Technometrics, 16, 399–408.
    • Torsney, B. (1977). Contribution to discussion of “maximum likelihood estimation via the em algorithm” by dempster et al. Journal of Royal...
    • Torsney, B. and Martı́n-Martı́n, R. (2009). Multiplicative algorithms for computing optimum designs. Journal of Statistical Planning and...
    • Uranisi, H. (1964). Optimal Design for the Special Cubic Regression Model on the q-simplex. Mathematical Report 1, Kyushu University, General...
    • Vazquez, A.R., Goos, P. and Schoen, E.D. (2018). Constructing two-level designs by concatenation of strength-3 orthogonal arrays. Technometrics.
    • Welch, W.J. (1982). Three NP-hard problems in computational statistics. Journal of Computation and Simulation, 1, 41–48.
    • Wong, W., Chen, R.-B., Huang, C.-C. and Wang, W. (2015). A modified particle swarm optimization technique for finding optimal designs for...
    • Wynn, H. (1970). The sequential generation of D-optimum experimental designs. The Annals of Statistics, 6, 1273–1285.
    • Yu, Y. (2010). Monotonic convergence of a general algorithm for computing optimal designs. The Annals of Statistics, 38, 1593–1606.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno