Ir al contenido

Documat


Bayesian joint spatio-temporal analysis of multiple diseases

  • Autores: Virgilio Gómez Rubio Árbol académico, Francisco Palmí Perales, Gonzalo López Abente Árbol académico, Rebeca Ramis Prieto Árbol académico, Pablo Fernández Navarro
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 43, Nº. 1, 2019, págs. 51-74
  • Idioma: inglés
  • DOI: 10.2436/20.8080.02.79
  • Enlaces
  • Resumen
    • In this paper we propose a Bayesian hierarchical spatio-temporal model for the joint analysis of multiple diseases which includes specific and shared spatial and temporal effects. Dependence on shared terms is controlled by disease-specific weights so that their posterior distribution can be used to identify diseases with similar spatial and temporal patterns. The model proposed here has been used to study three different causes of death (oral cavity, esophagus and stomach cancer) in Spain at the province level. Shared and specific spatial and temporal effects have been estimated and mapped in order to study similarities and differences among these causes. Furthermore, estimates using Markov chain Monte Carlo and the integrated nested Laplace approximation are compared.

  • Referencias bibliográficas
    • Abellan, J., Richardson, S. and Best, N. (2008). Use of space-time to investigate the stability of patterns of disease. Enviromental Health...
    • Aragonés, N., Pérez-Gómez, B., Pollán, M., Ramis, R., Vidal, E., Lope, V., Garcı́a-Pérez, J., Boldo, E. and López-Abente, G....
    • Aragonés, N., Ramis, R., Pollán, M., Pérez-Gómez, B., Gómez-Barroso, D., Lope, V., Boldo, E., Garcı́aPérez, J. and López-Abente,...
    • Banerjee, S., Carlin, B. and Gelfand, A. (2014). Hierarchical Modeling and Analysis for Spatial Sata. Crc Press.
    • Besag, J., York, J. and Mollié, A. (1991). Bayesian image restoration, with two applications in spatial statistics. Annals of the Institute...
    • Botella-Rocamora, P., Martı́nez-Beneito, M. and Banerjee, S. (2015). A unifying modeling framework for highly multivariate disease mapping....
    • Carroll, R., Lawson, A. B., Faes, C., Kirby, R. S., Aregay, M. and Watjou, K. (2016). Spatio-temporal bayesian model selection for disease...
    • Carroll, R., Lawson, A. B., Faes, C., Kirby, R. S., Aregay, M. and Watjou, K. (2017). Extensions to multivariate space time mixture modeling...
    • Carroll, R., Lawson, A. B., Kirby, R. S., Faes, C., Aregay, M. and Watjou, K. (2017). Space-time variation of respiratory cancers in South...
    • Corberán-Vallet, A. (2012). Prospective surveillance of multivariate spatial disease data. Statistical Methods in Medical Research, 21,...
    • Downing, A., Forman, D., Gilthorpe, M., Edwards, K. and Manda, S. (2008). Joint disease mapping using six cancers in the Yorkshire region...
    • Elliot, P., Wakefield, J., Best, N. and Briggs, D. (2000). Spatial Epidemiology: Methods and Applications. Oxford University Press.
    • Ferlay, J., Shin, H., Bray, F., Forman, D., Mathers, C. and Parkin, D. (2012). Cancer incidence and mortality worldwide: Iarc cancerbase no....
    • Gelfand, A. and Vounatsou, P. (2003). Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics, 4, 11–15.
    • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1, 515–534.
    • Gilks, W., Richardson, S. and Spiegelhalter, D. (1996). Markov Chain Monte Carlo in Practice. Boca Raton, Florida: Chapman & Hall.
    • Goicoa, T., Adin, A., Ugarte, M. D. and Hodges, J. S. (2018). In spatio-temporal disease mapping models, identifiability constraints affect...
    • Guangquan, L., Best, N., Hansell, A., Ahmed, I. and Richardson, S. (2012). Baystdetect: detecting unusual temporal patterns in small area...
    • Jin, X., Carlin, B. and Banerjee, S. (2005). Generalized hierarchical multivariate car models for areal data. Biometrics, 61, 950–961.
    • Knorr-Held, L. (2000). Bayesian modelling of inseparable space-time variation in disease risk. Statistics in Medicine, 19, 2555–2567.
    • Knorr-Held, L. and Best, N. (2001). A shared component model for detecting joint and selective clustering of two diseases. Journal of the...
    • Lawson, A. (2013). Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. CRC press.
    • Lawson, A. B., Carroll, R., Faes, C., Kirby, R. S., Aregay, M. and Watjou, K. (2017). Spatiotemporal multivariate mixture models for bayesian...
    • López-Abente, G., Aragonés, N., Garcı́a-Pérez, J. and Fernández-Navarro, P. (2014). Disease mapping and spatio-temporal analysis:...
    • López-Abente, G., Aragonés, N., Pérez-Gómez, B., Pollán, M., Garcı́a-Pérez, J., Ramis, R. and FernándezNavarro, P. (2014)....
    • López-Abente, G., Ramis, R., Pollán, M., Aragonés, N., Pérez-Gómez, B., Gómez-Barroso, D., Carrasco,
    • J., Lope, V., Garcı́a-Pérez, J., Boldo, E. and Garcı́a-Mendizabal, M. (2007). Atlas Municipal de Mortalidad por Cáncer en España,...
    • Lunn, D., Thomas, A., Best, N. and Spiegelhalter, D. (2000). WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility....
    • MacNab, Y. (2011). On gaussian markov random fields and bayesian disease mapping. Statistical Methods in Medical Research, 20, 49–68.
    • Mardia, K. (1988). Multi-dimensional multivariate gaussian markov random fields with application to image processing. Journal of Multivariate...
    • Marı́-Dell’Olmo, M., Martı́nez-Beneito, M., Gotsens, M. and Palència, L. (2014). A smoothed ANOVA model for multivariate ecological...
    • Martı́nez-Beneito, M. (2013). A general modelling framework for multivarite disease mapping. Biometrika, 100, 539–553.
    • Martı́nez-Beneito, M., Botella-Rocamora, P. and Banerjee, S. (2016). Towards a multidimensional approach to bayesian disease mapping. Bayesian...
    • R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria,: R Foundation for Statistical Computing.
    • Richardson, S., Abellan, J. J. and Best, N. (2006). Bayesian spatio-temporal analysis of joint patterns of male and female lung cancer risks...
    • Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. CRC Press.
    • Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations....
    • Seoane-Mato, D., Aragonés,N., Ferreras, E., Garcı́a-Pérez, J., Cervantes-Amat, M., Fernández-Navarro, P., Pastor-Barriuso, R. and...
    • Sturtz, S., Ligges, U. and Gelman, A. (2005). R2WinBUGS: A package for running winbugs from R. Journal of Statistical Software, 12, 1–16.
    • Ugarte, M. D., Adin, A. and Goicoa, T. (2016). Two-level spatially structured models in spatio-temporal disease mapping. Statistical Methods...
    • Wang, F. and Wall, M. (2003). Generalized common spatial factor model. Biostatistics, 4, 569–582.
    • Zhang, Y., Hodges, J. and Banerjee, S. (2009). Smoothed anova with spatial effects as a competitor to mcar in multivariate spatial smoothing....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno