Ir al contenido

Documat


A computer verification for the value of the Topological Entropy for some special subshifts in the Lexicographical Scenario.

  • Aranzubia, Solange [1] ; Carvajal, Rubén [2] ; Labarca, Rafael [2]
    1. [1] Universidad Central

      Universidad Central

      Hospital, Costa Rica

    2. [2] Universidad de Santiago.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 37, Nº. 3, 2018, págs. 439-477
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172018000300439
  • Enlaces
  • Resumen
    • The Lorenz Attractor has been a source for many mathematical studies. Most of them deal with lower dimensional representations of its first return map. An one dimensional scenario can be modeled by the standard two parameter family of contracting Lorenz maps. The dynamics, in this case, can be modeled by a subshift in the Lexicographical model. The Lexicographical model is the set of two symbols with the topology induced by the lexicographical metric and with the lexicographical order. These subshifts are the maximal invariant set for the shift map in some interval. For some of them, the extremes of the interval are a minimal periodic sequence and a maximal periodic sequence which is an iteration of the lower extreme (by the shift map). For some of these subshifts the topological entropy is zero. In this case the dynamics (of the respective Lorenz map) is simple.Associated to any of these subshifts (let call it Λ) we consider an extension (let call it Γ) that contains Λ which also can be constructed by using an interval whose extremes can be defined by the extremes of Λ. For these extensions we present here a computer verification of the result that compute its topological entropy. As a consequence, of our results, we can say: the longer the period of the periodic sequence is then the lower complexity in the dynamics of the extension the associated map has.

  • Referencias bibliográficas
    • Adler, R. L.; Konheim, A.G.; Mc Andrew, M.H. Topological Entropy Transactiones of the A.M.S. vol 144, pp. 309-319, (1965).
    • Alekseev, V. M. Quasirandom Dynamical Systems Math. USSR Sbornik - New Series Vol. 5 No 1, (1968).
    • Alseda, Lluís; Llibre, Jaume; Misiurewicz, Michal Combinatorial dynamics and entropy in dimension one. Second edition. Advenced Series in...
    • Aranzubia, S.Hacia una demostración de la arco conexidad de la isentropa de entropíaa cero de la familia cuadrática de Lorenz lexicográfica:...
    • Aranzubia, S.; Labarca R. A Formula for the Boundary of Chaos in the Lexicographical Scenario and Applications to the Bifurcation Diagram...
    • Block,L; Guckenheimer, J.; Misiurewicz, M; Young, L.S. Periodic points and topological entropy. Lectures Notes in Mathematics. No 819, Springer...
    • Bamón,R.; Labarca, R.; Mañé R.; Pacifico, M.J.The explosion of singular cycles Publ. Math. IHES Vol 78, pp 207-232, (1993).
    • Bruin, H.; Van Strien, S. Monotonicity of Entropy for Real Multimodal Maps Journal of the American Mathematical Society, Vol 28, No 1, pp....
    • de Melo W., Van Strien S. Lectures on One Dimensional Dynamics Springer Verlag, (1993).
    • Francis, J. G. F.; The QR Transformation, I. The Computer Journal, 4(3), pp. 265-271, (1961).
    • The GNU Scientific Library (GSL); http://www.gnu.org/software/gsl/
    • Guckenheimer J., Williams R. F. Structural Stability of Lorenz Attractors Publ. Math. IHES 50, pp 59-72, (1979).
    • Labarca, R. Bifurcation of Contracting Singular Cycles Ann. Scient. Ec. Norm. Sup. 4eserie, t. 28, pp 705-745, (1995).
    • Labarca, R. A note on the topological classification of Lorenz maps on the interval. Topics in symbolic dynamics an applications, London Math....
    • Labarca, R. Unfolding singular cycles. Notas Soc. Mat. Chile (N5) No 1, pp. 38-71, (2001).
    • Labarca, R,La Entropíaa topológica, propiedades generales y algunos cálculos en el caso del shift de Milnor-Thurston.Con la colaboración de...
    • Labarca,R.; Moreira C. Bifurcation of the Essential Dynamics of Lorenz Maps of the real Line and the Bifurcation Scenario for the Linear family...
    • Labarca, R.; Moreira C. Bifurcation of the Essential Dynamics of Lorenz Maps and applications to Lorenz Like Flows: Contributions to the study...
    • Labarca, R.; Moreira C. Essential Dynamics for Lorenz Maps on the real line and Lexicographical World. Ann. de L’Institut H. Poincaré Anal....
    • Labarca, R.; Moreira, C.Bifurcation of the essential dynamics of Lorenz Maps on the real line and the bifurcation scenario for Lorenz like...
    • Labarca R., Plaza S. Bifurcations of discontinuous maps of the interval and palindromic numbers. Boletín de la Sociedad Matemática Mexicana(3),...
    • Labarca, R.; San Martín, B. Prevalence of hyperbolicity for complex singular cycles. Bol. Soc. Brasil. Mat. (N5) 28, No 2 pp. 343-362, (1997).
    • Labarca, R.; Vásquez, L. On the Characterization of the kneading sequences associated to Lorenz maps of the interval and to orientation preserving...
    • Labarca R., Vásquez L. On the Characterization of the Kneading Sequences Associated to Lorenz Maps of the Interval. Bol. Soc. Bras. Mat.(NS),...
    • Moreira, C. Maximal invariant sets for restriction of tent and unimodal maps. Qual. Thory Dyn. Syst, 2, N o2, pp. 385-398, (2001).
    • Metropolis, N.; Stein, M. L. ; Stein, P.R. “Stabe States of a nonlinear transformation.”. Numerisch Mathematik 10, pp. 1-19, (1967).
    • Metropolis, N.; Stein, M. L.; Stein, P. R. “On finite limit sets for transformations on the unit interval.”. Journal of combinatorial Theory...
    • Milnor, J. Remarks on iterated cubic maps Experiment. Math. 1, No 1, pp. 5-24 MR1181083, (1992).
    • Milnor, J. ; Thurston, W. On iterated maps on the interval. Lect. Notes in Math 1342 pp 465-563 Springer Verlag, (1988).
    • Misiurewicz, M. On non continuity of topological entropy Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 19, pp. 319-320, (1971).
    • Sait Pierre, Matthias Topological and measurable dynamics of Lorenz Maps. Dissertationes Mathematicae (ROZPRAWY MATEMATYCZNE) Polska Akademie...
    • Silnikov, L.P.A Contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type,...
    • Smale, S. Differentiable dynamical systems. Bull. Amer. Math. Soc, 73, pp. 747-819, (1967).
    • Zacks, Mikhail A. Scaling Properties and renormalization invariants for the “homoclinic quasiperiodicity”. Physyca D, Vol 92, pp. 300-316,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno