Ir al contenido

Documat


Dihedral groups are of schottky type

  • Autores: Rubén Antonio Hidalgo Árbol académico
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 18, Nº. 1, 1999, págs. 23-48
  • Idioma: inglés
  • DOI: 10.22199/S07160917.1999.0001.00003
  • Enlaces
  • Resumen
    • We show that a dihedral group H of conforma! automorphisms of a closed Riemann surface S can be lifted for a suitable Schottky uniformization of S. In particular, this implies the existence of a suitable symplectic homology basis of S for which the symplectic representation of H has a simple form.

  • Referencias bibliográficas
    • Citas [1] H. M. Farkas. Unramified coverings of hyperelliptic Riemann surfaces. Complex Analysis I, Lecture Notes in Math., vol. 1275, Springer-Verlag,...
    • [2] H. Farkas and I. Kra. Riemann surfaces. Springer-Verlag Graduate Texts in Mathematics, 71, Berlin, Heidelberg, New York, (1991).
    • [3] F. Harary. Graph theory. Addison-Wesley Series in Mathematics (1969).
    • [4] R. A. Hidalgo. On Schottky groups with automorphisms. Ann. Acad. Scie. Fenn. Ser. Al Mathematica 19, pp. 247-258, (1994).
    • [5] R. A. Hidalgo. Schottky uniformizations of closed Riemann surfaces with abelian groups of conformal automorphisms. Glasgow Math. J. 36,...
    • [6] R. A. Hidalgo. Closed Riemann surfaces with dihedral groups of conformal automorphisms. Revista Proyecciones 15, 47-90, (1996).
    • [7] S. P. Kerckhoff. The Nielsen realization problem. Ann. Math. 117, 235-265, (1983).
    • [8] B. Maskit. Kleinian groups. Grundlehren der Mathematischen Wissenschaften, Vol. 287, Springer- Verlag, Berlín, Heildelberg, New York,...
    • [9] B. Maskit. On the classification of Kleinian groups I and II. Acta Math. 135 (1975) and 138 (1977).
    • [10] D. McCullough, A. Miller and B. Zimmermann. Group actions on handlebodies. Proc. London Math. Soc. 59, 373-416, (1989).
    • [11] J. F. X. Ries. Subvarieties of moduli space determined by finite group actions acting on surfaces. Transactions A.M.S. 335, 385-406,...
    • [12] S. A. Wolpert. Geodesic length functions and the Nielscn problem. J. Diff. Geom. 25, 275-296, (1987).
    • [13] B. Zimmermann. Über Homöomorphismen n-dimensionaler Henkelkörper und endliche Erweiterungen von Schottky-Gruppen. Comment. Math. Helv....
    • [14] R. Rodríguez and V. González. On principally polarized abelian varieties induced by prysms and pyramids. To appear in Complex Geometry...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno