Ir al contenido

Documat


Maximal semigroups in finitely generated nilpotent groups

  • Autores: Osvaldo Germano do Rocio
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 17, Nº. 1, 1998, págs. 55-62
  • Idioma: inglés
  • DOI: 10.22199/S07160917.1998.0001.00004
  • Enlaces
  • Resumen
    • We obtain a classification of maximal subsemigroups of finitely generated nilpotent groups. In the principal results of this paper we show that there is a one-to-one correspondence between these subsemigroups and the non trivial homomorphisms of the group in R.

  • Referencias bibliográficas
    • Citas [1] Hilgert. J., K. H. Hofmann an J. D. Lawson: "Lie groups, Convex eones, and Semigroups", Oxford. University Press, (1989).
    • [2] Lawson, J. : Maximal semigroups of Lie groups that are total, Proc. Edinburgh Math. Soc. Vol. 30, pp. 479- 501, (1987).
    • [3] Matsushima, Y. : On the discrete subgroups and homogeneous spaces of nilpotent Lie groups, Nagoya Math. J., pp. 365-416, (1951).
    • [4] Raghunathan, M. S. : "Discrete subgroups of Líe groups", Springer-Verlag, (1972).
    • [5] Ribemboim, P. : "Théorie des groupes ordonnés", Monografias de Matemática. Universidade Nacional del Sur, Bahia Blanca, ( 1963).
    • [6] Rocio, O. G. and L. A. B. San Martín: Discrete semigroups in nilpotent Lie groups, Semigroup Forum, Vol. 51, pp. 125- 133, (1995).
    • [7] Rocio, O. G. and L. A. B. San Martín: Semigroups in lattice of solvable Lie groups. Journal of Líe Theory, 5, pp. 179-202, (1996).
    • [8] Magnus, W., Karras, A. and D. Solitar,: Combinatorial group theory, Pure and applied mathematícs. Vol. 13, (1966).
    • [9] Margulis, G. A.: Discrete subgroups of semisimple Líe groups, Springer-Verlag, (1989).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno