Ir al contenido

Documat


On the arithmetic sum of middle-cantor sets

  • Muñoz, Eduardo [1] ; Vera, Jaime [1] ; Plaza, Sergio [2]
    1. [1] Universidad Católica del Norte

      Universidad Católica del Norte

      Antofagasta, Chile

    2. [2] Universidad de Santiago de Chile

      Universidad de Santiago de Chile

      Santiago, Chile

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 14, Nº. 1, 1995, págs. 51-63
  • Idioma: inglés
  • DOI: 10.22199/S07160917.1995.0001.00005
  • Enlaces
  • Resumen
    • In this article we study the arithmetic sum (difference) set K⍺ + Kβ  in I = [0, 1] in terms of the parameters (⍺, β) ∊  I x I, where K⍺ and Kβ are middle-Cantor sets contained in I. We describe two regions, A and B, in the parameter space (⍺, β)  where the characterization of the arithmetic sum set K⍺ + Kβ  is given.

  • Referencias bibliográficas
    • Citas [1] Bamón, R., Plaza,S., Vera, J. On central Cantor sets with self-arithmetic difference of positive Lebesgue measure. Submited to...
    • [2] Falconer, K. Fractal Geometry. J., Wiley& Sons (1990).
    • [3] Falconer, K. The Geometry of Fractal Sets. Cambridge Univ. Press (1985).
    • [4] Mendes, P., Oliveira, F. On the topological structure of the arithmetic sum of two Cantor sets. Nonlinearity 7, 329-343 (1994).
    • [5] Newhouse, S. The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. Publ. Math. !.H. E. S. 50, 101-151...
    • [6] Palis, J. Homoclinic orbits, hyperbolic dynamics and dimension of Cantor sets. Contemporary Mathematics vol. 58, part III, 204-216 (1987).
    • [7] Palis, J., Takens, F. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations: fractal dimensions and infinitely many...
    • [8] Sannami, A. An example of regular Cantor set whose difference is a Cantor set with positive Lebesgue measure. Hokkaido Math. Journal,...
    • [9] Williams, R. F. How big is the intersection of two Cantor sets?. Contemporary Mathematics, vol. 117, 163-175 (1991).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno