Ir al contenido

Documat


Commutativity results for rings with certain constraints on commutators

  • Abujabal, Hamza A. S. [1] ; Peric, Veselin [2]
    1. [1] King Abdul Aziz University Hospital

      King Abdul Aziz University Hospital

      Arabia Saudí

    2. [2] University of Sarajevo

      University of Sarajevo

      Bosnia y Herzegovina

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 14, Nº. 1, 1995, págs. 27-42
  • Idioma: inglés
  • DOI: 10.22199/S07160917.1995.0001.00003
  • Enlaces
  • Resumen
    • We investigate here the commutativity of a left (resp. right) s-unital ring R satisfying the polynomial identity yr [xny] xt = ±y3 [x, ym] (resp. yr [xn, y] xt = ± [x, ym] ys ) for some non-negative integers m >0, n > 0, r, s and t such that n + t > 1 (resp. m + s > 1 for r = 0). For such a ring R, we prove the commutativity if n + t > 1, and the commutators in R are n-torsion free (Q (n) property) for m > 1, n > 1, and ( t + 1)-torsion free for n = 1 (and t > 0). lf r = 0, then R is commutative provided m+ s > 1 and R has Q (m) property for m > 1, n > 1, and Q (s + 1) property for m = 1 (and s > 0). Especially, for r = 0, R is commutative, if m and n are relatively prime integers (not both equal to one).

  • Referencias bibliográficas
    • Citas [1] H. A. S. Abujabal and V. Peric, Commutativity of s-unital rings through a streb result, Radoví Math., 7, 73-92 (1991).
    • [2] H. A. S. Abujabal and V. Peric, Commutativity theorems for s-unital rings with constraints on commutators, Results Math., 21, 256 - 263...
    • [3] H. A. S. Abujabal and V. Peric, Sorne commutativity theorems for s-unital rings with constraints on commutators. Publ. Inst. Math. (Beograd),...
    • [4] H. Abu-Khuzam and A. Yaqub, Rings and groups with commuting powers, Internat. J. Math. and Math. Sci., 4 (1), 101- 107 (1981).
    • [5] H. E. Bell, A Commutativity condition for tings, Ganad. Math. Bull., 28, 486 - 491 (1976).
    • [6] H. E. Bell, On the power map and ring commutativity, Ganad. Math. Bull., 21, 399- 404 (1978).
    • [7] H. E. Bell, On rings with commuting powers, Math. Japon., 24 (4), 473- 478 (1979).
    • [8] l. N. Herstein, A generalization of a theorem of Jacobson, Amer. J. Math. 73, 756- 762 (1951).
    • [9] Y. Hirano, Y. Kobayashi and H. Tominaga, Sorne polynomial identities and commutativity of s-unital rings, Math. J. Okayama Univ., 24,...
    • [10] T. P. Kezlan, A note on commutativity of semi prime PI-rings, Math. Japon, 27, 267- 268 (1982).
    • [11] W. K. Nicholson and A. Yaqub, A commutativity theorem for rings, and groups with constraints on commutators, Ganad. Math. Bull., 22,...
    • [12] E. Psomopoulos, H. Tominaga and A. Yaqub, Some commutativity theorems for n-torsion free rings, Math. J. Okayama Univ., 23, 37-39 (1981).
    • [13] E. Psomopoulos, Commutativity theorems for rings and groups with constraints on commuttors, Internat. J. Math. and Math. Sci., 7 (3),...
    • [14] M. A. Quadri and M. A. Khan, A commutativity theorem for left s- unital rings, Bull. Inst. Math. Acad. Sinica, 15, 323-327 (1987).
    • [15] H. Tominaga and A . Yaqub, A commutativity theorem for one-sided s- unital rings, Math. J. Okayama Univ., 26, 125- 128 (1984).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno