Ir al contenido

Documat


Involutive co-distributions preserved by transitive families of vector fields

  • Ayala Bravo, Víctor [1]
    1. [1] Universidad Católica del Norte

      Universidad Católica del Norte

      Antofagasta, Chile

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 13, Nº. 1, 1994, págs. 35-52
  • Idioma: inglés
  • DOI: 10.22199/S07160917.1994.0001.00006
  • Enlaces
  • Resumen
    • This paper deals with integrability conditions of involutive co-distributions defined on the co-tangent bundle of a differentiable manifold M. Via Frobeniu.s 's integrability theorem, the analysis is aimed at the search of conditions so that this type of co-distributions be preserved by transitive familiee of vector fields in M. We rely on the work of Lobry, Sussmann, Matsuda and Stefan. The type of situation studied comes up naturally in weak-observability problems and weakly- minimal realizations of arbitrary control systems.

  • Referencias bibliográficas
    • Citas [1] Ayala. V. and San Martin, L., Minimal realizations under controllability,Systems Control Letters 16 ( 1991) 289-293.
    • [2] Ayala, V., Sobre a Observabilidade de Sistemas de Controle, Doutor em Ciencias, Thesis, Universidade Estadual de Campinas, Brasil, 1988.
    • [3] Basto Concalvez, J. Nonlinear observability and duality, Systems Control Letters 4 (1984) 97-101.
    • [4] Hermann, R. and Krener, A. Nonlinear controllability and observability, IEEE Trans. Automat. Control 22(5) (1977) 728-740.
    • [5] Lobry,C., Controlabilite des systemes non lineaires, SIAM J. Control 8 (1970) 573-605.
    • [6] Matsuda, M., An integration theorem for completely integrable systems with singularities, Osaka J. Math. 5 (1968), 279-283.
    • [7] Stefan, P., Accesible sets, orbits and foliations with singularities, Proc. London Math. Soc. 29 (1974) 699-713.
    • [8] Stefan, P., Integrability of Systems of Vector Fields, J. London Math. Vol. 2, 21 (1980).
    • [9] Sussmann, H., Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973) 171-188.
    • [10] Warner, F., Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman and Company, Glenview Illinois, 1971.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno