Ir al contenido

Documat


Results on the Chebyshev method in banach spaces

  • Argyros, Ioannis K. [1] ; Chen, Dong [2]
    1. [1] Cameron University

      Cameron University

      Estados Unidos

    2. [2] University of Arkansas.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 12, Nº. 2, 1993, págs. 119-128
  • Idioma: inglés
  • DOI: 10.22199/S07160917.1993.0002.00002
  • Enlaces
  • Resumen
    • In this paper, under standard Newton-Kantorovich conditions, we establish the Kantorovich-type convergence theorem for Chebyshev method in Banach spaces.

  • Referencias bibliográficas
    • Citas [1] Argyros, I.K.: Quadratic equations and applications to Chandrasekhar's and related equations. Bull. Austral. Math. Soc., 32...
    • [2] Argyros, I.K.: On a class of nonlinear integral equations arising in Neutron Transport. Aequations Mathematicae, 36 (1988), 99-111.
    • [3] Chen, D.: Standard Kantorovich theorem of the Chebyshev method on complex plane. Intern. J. Computer Math., 42:(1+2) (1993), 67-70.
    • [4] Gragg, W.B.; Tapia, R.A.: Optimal error bounds for Newton-Kantorovich Theorem. SIAM J. Numer. Aual., 11 (1974), 10-13.
    • [5] Kantorovich, L.V.; Akilov, G.P.: Functional Analysis in Normed Spaces. Pergamon Press, New York, 1964.
    • [6] Ostrowski, A.M.: Solution of Equations in Euclidean and Banach Spaces. Academic Press, New York, 3rd ed., 1973.
    • [7] Rall, L.B.: Computational Solution of Nonlinear Operator Equations. John Wiley & sons, Inc., New York, 1969.
    • [8] Yamamoto, T.: On the methos of Tangent Hyperbolas in Banach Spaces. J. Computational and Applied Math., 21(1988), 75-88.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno