Ir al contenido

Documat


Asymptotic analysis for the number of subgraphs of a given size in temporal random graphs

  • Fierro, Raúl [1] ; Figueroa, Gladys [1]
    1. [1] Pontificia Universidad Católica de Valparaíso

      Pontificia Universidad Católica de Valparaíso

      Valparaíso, Chile

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 12, Nº. 1, 1993, págs. 1-11
  • Idioma: inglés
  • DOI: 10.22199/S07160917.1993.0001.00001
  • Enlaces
  • Resumen
    • In this work we study a law of large numbers and a functional central limit theorem for the number os subgraphs of given size in a random graph which evolves with the lime. Our motivation comes from the study of reliability measures in communications networks.

  • Referencias bibliográficas
    • Citas [1] Ikeda, N.; Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, 1981.
    • [2] Karonski, M.; Rucinski, A.: Poisson Convergence and Semi-induced Properties of Random Graphs. Math. Proc. Camb. Phil. Soc. 101-291, 1987.
    • [3] Liggett, T.: Interacting Particle Systems. Springer- Verlag. 1985.
    • [4] Rebolledo, R.: La Méthode des Martingales Apliquée a l'étude de la Convergence en Loi de Precessus. Bull. Soc. Math. France. Mémoire...
    • [5] Rebolledo, R.: Central Limit Theorems for Local Martingales. Z. für W. 51 269-286. 1980.
    • [6] Rucinski, A.: When Are Small Subgraphs of a Random Graphs Normally Distributed?. Prob. Th. Rel. Fields. 78 1-10. 1988.
    • [7] Siegrist, K.; Amin, A.; Slater, P.: The Central Limit Theorem and the Law of Large Numbers for pair-connectivity in Bernouilli trees....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno