Ir al contenido

Documat


Co-Adjoint representation and controllability

  • Autores: Víctor Ayala, Luis B. Vergara
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 11, Nº. 1, 1992, págs. 37-48
  • Idioma: inglés
  • DOI: 10.22199/S07160917.1992.0001.00006
  • Enlaces
  • Resumen
    • Let Σ an invariant control system over Lie group G The existence of a nontrivial simplectic orbit of G is analysed, so that the Hamiltonian system equivalent to Σ via the co-adjoint representation, has a vector called simplectic. This allows the construction of a strictly increasing function over the positive trajectories of Σ, determining sufficient conditions for the controllability of Σ over G.

  • Referencias bibliográficas
    • Citas [ 1] Brockett, R.: Systems Theory on Group Manifolds and Cosets Spaces. Siam J. Control, 10, pp 265-284, 1972.
    • [ 2] Jurdjevic, V. and Kupka, I.: Control Systems on Semi-simple Lie Groups and their Homogeneous Spaces. Ann. Inst. Fourier, Grenoble, 31,...
    • [ 3] Jurdjevic, V . and Sussmann, H.: Control System on Lie Groups. Journal of Differential Equations, 12 , pp 313-329, 1972.
    • [ 4] Kupka, I.: Introduction to the Theory of Systems. 16 Coloquio Brasileiro de Matemática, 1987.
    • [ 5] San Martín, L. and Crouch, P.: Cotrollability on Principal Fibre Bundle with Compac Structure Group. System & Control Letters, 5,...
    • [ 6] Sussmann, H.: Orbits of Families of Vector Fields and Integrability of Distributions. Transactions of the American Mathematical Society,...
    • [7] Warner, F.: Foundations of Differentiable Manifolds and Lie Group. Scott, Foresman and Company, Glenview Illinois, 1971.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno