Ir al contenido

Documat


On the approximation of solutions of compact operator equations

  • Argyros, Ioannis K. [1]
    1. [1] New Mexico State University

      New Mexico State University

      Estados Unidos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 7, Nº. 14, 1988, págs. 29-46
  • Idioma: inglés
  • DOI: 10.22199/S07160917.1988.0014.00002
  • Enlaces
  • Resumen
    • We approximate in isolated solution of a compact operator equations using the solutions of a family of collectively compact operator equations.

  • Referencias bibliográficas
    • Citas [1] Anselone, P. M., Collectively Compact Operator Approximation Theory, Prentice-Hall, Englewood Cliffs, N. J., 1971.
    • [2] Argyros, I. K., Quadratic equations and applications to Chandrase- khar's and related equations., Bull. Austral. Math Soc., Vol. 32...
    • [3]_____. On a contraction theorem and applications. Proceedings of Symposium in Pure Math., A.M.S., Vol. 45, 1(1986), 51-53.
    • [4] Atkinson, K. E., The numerical evaluation of fixed points for completely continuous operators. SIAM J. Num. Anal. 10(1973), 799-807.
    • [5] Halmos, P., Finite dimensional vector spaces. D. Van. Nostrand. 1958.
    • [6] Kelly , C. T. , Approximation of solutions of some quadratic integral equations in Transport theory, J. Integ. Eq. 4, (1982), 221-237.
    • [7] Krasnoleskii, M. A., Topological Methods in the theory of Nonlinear integral equations, McMillan, N. Y., 1964.
    • [8] Moore, R. H., Approximation to Nonlinear operator equations and Newton's method. Numer. Math. 12 (1968), 23-29.
    • [9] Rall , L.B., Computational solutions of nonlinear operator equations, Pergamon Press, 1978.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno