Ir al conteni
d
o
B
uscar
R
evistas
T
esis
Libr
o
antiguo
Co
n
gresos
A
u
tores
Ayuda
Cambiar idioma
Idioma
català
Deutsch
English
español
euskara
français
galego
italiano
português
română
Cambiar
On some spaces of Lacunary I-convergent sequences of interval numbers defined by sequence of moduli
Shafiq, Mohd
[2]
;
Esi, Ayhan
[1]
[1]
Adıyaman University
Adıyaman University
Turquía
[2]
Govt. Degree College.
Localización:
Proyecciones: Journal of Mathematics
,
ISSN
0716-0917,
ISSN-e
0717-6279,
Vol. 36, Nº. 2, 2017
,
págs.
325-346
Idioma:
inglés
DOI
:
10.4067/S0716-09172017000200325
Enlaces
Texto completo
Referencias bibliográficas
Citas [1] ESI, A. (2012) A new class of interval numbers. EN: Journal of Qafqaz University, Mathematics and Computer Science. [s.l.: s.n.],...
[2] ESI, A. (2012) Lacunary sequence spaces of interval numbers. EN: Thai Journal of Mathemaatics, 10 (2). [s.l.: s.n.], 445-451.
[3] ESI, A. (2012) Double lacunary sequence spaces of double Sequence of interval numbers. EN: Proyecciones Journal of Mathematics, 31 (1)....
[4 ESI, A. (2011) Strongly almost -convergence and statistically almost -convergence of interval numbers. EN: Scientia Magna, 7 (2). [s.l.:...
[5] ESI, A. (2014) Statistical and lacunary statistical convergence of interval numbers in topological groups. EN: Acta Scientarium Technology....
[6] ESI, A. (2013) On asymptotically -statistical equivalent sequences of interval numbers. EN: Acta Scientarium Technology, 35 (3). [s.l.:...
[7] ESI, A. (2013) Asymptotically lacunary statistically equivalent sequences of interval numbers, International Journal of Mathematics and...
[8] ESI, A. (2013) Some I-convergent of double Λ-interval sequences defined by Orlicz function., Global, J. of Mathematical Analysis, 1 (3)....
[9] ESI, A. (2014) λ-Sequence Spaces of Interval Numbers. EN: Appl. Math. Inf. Sci. 8(3). [s.l.: s.n.], 1099-1102.
[10] BUCK, R. C. (1953) Generalized asymptotic density,Amer. EN: J. Math. 75. [s.l.: s.n.], 335-346.
[11] CHIAO, K. P. (2002) Fundamental properties of interval vector max-norm. EN: Tamsui Oxford Journal of Mathematical Sciences, 18(2). [s.l.:...
[12] DWYER, P. S. (1951) Linear Computation. New York: Wiley.
[13] FAST, H. (1951) Sur la convergence statistique. EN: Colloq. Math. 2. [s.l.: s.n.], 241-244.
[14] FREEDMAN, A. R.(1978) Sember,J.J.and Raphael,M.,Some Cesaro type summability spaces. EN: Proc. London Math. Soc., 37. [s.l.: s.n.], 508-520.
[15] FRIDY, J. A. (1985) On statistical convergence. EN: Analysis, 5. [s.l.: s.n.], 301-313.
[16] KHAN, V. A. (2014) Mohd Shafiq and Ebadullah, K., On paranorm Iconvergent sequence spaces of interval numbers. EN: J. of Nonlinear Analysis...
[17] ] KHAN, V. A. (2014) On paranorm BVσ Iconvergent sequence spaces defined by an Orlicz function. EN: Global Journal of mathematical Analysis,...
[18] KOLK, E. (1993) On strong boundedness and summability with respect to a sequence of moduli. EN: Acta Comment.Univ.Tartu., 960. [s.l.:...
[19] KOLK, E. (1994) Inclusion theorems for some sequence spaces defined by a sequence of moduli. EN: Acta Comment.Univ. Tartu., 970. [s.l.:...
[20] KOSTYRKO, P. (20??) Statistical convergence and Iconvergence.Real Analysis Exchange.
[21] KOSTYRKO, P. (2000) I-convergence,Raal Analysis. EN: Analysis Exchange. 26(2). [s.l.: s.n.], 669-686.
[22] MOORE, R. E. (1959) Automatic Error Analysis in Digital Computation, LSMD-48421, Lockheed Missiles and Space Company. [s.l.: s.n.].
[23] MOORE, R. E. (1959) Interval Analysis I, LMSD-285875, Lockheed Missiles and Space Company, Palo Alto, Calif. [s.l.: s.n.].
[24] MURSALEEN, M. (2010) On the Spaces of λ-Convergent and Bounded Sequences. EN: Thai Journal of Mathematics 8(2). [s.l.: s.n.], 311-329.
[25] MURSALEEN, M. (2014) Spaces of Ideal Convergent sequences. Article ID 134534, 6 pages. [s.l.: s.n.]. http://dx.doiorg/10.1155/2014/134534.
[26] NAKANO, H. (1953) Concave modulars. EN: J. Math Soc. Japan, 5. [s.l.: s.n.], 29-49.
[27] RUCKLE, W. H. (1968) On perfect Symmetric BK-spaces. EN: Math. Ann. 175. [s.l.: s.n.], 121-126.
[28] RUCKLE, W. H. (1967) Symmetric coordinate spaces and symmetric bases. EN: Canad. J. Math. 19. [s.l.: s.n.], 828-838.
[29] RUCKLE, W. H. (1973) FK-spaces in which the sequence of coordinate vectors is bounded. EN: Canad. J. Math. 25 (5). [s.l.: s.n.], 973-975.
[30] SALÁT, T. (1980) On statistical convergent sequences of real numbers. En: Math, Slovaca 30. [s.l.: s.n.].
[31] SALÁT, T. (2004) On some properties of Iconvergence Tatra Mt. EN: Math. Publ. 28. [s.l.: s.n.], 279-286.
[32] SALÁT, T. (2005) On I-convergence field. EN: Ital. J. Pure Appl. Math. 17. [s.l.: s.n.], 45-54.
[33] SCHOENBERG, I. J. (1959) The integrability of certain functions and related summability methods. EN: Amer. Math. Monthly, 66. [s.l.:...
[34] SENGÖNÜL, M. (2010) On the Sequence Spaces of Interval Numbers. EN: Thai J. of Mathematics, 8(3). [s.l.: s.n.], 503-510.
[35] TRIPATHY, B. C. (1998) On statistical convergence. EN: Proc. Estonian Acad. Sci. Phy. Math. Analysis. [s.l.: s.n.], 299-303.
[36] TRIPATHY, B. C. (2009) Paranorm I-convergent sequence spaces. EN: Math. Slovaca 59 (4). [s.l.: s.n.], 485-494.
Acceso de usuarios registrados
Identificarse
¿Olvidó su contraseña?
¿Es nuevo?
Regístrese
Ventajas de registrarse
Mi Documat
S
elección
Opciones de artículo
Seleccionado
Opciones de compartir
Opciones de entorno
Sugerencia / Errata
©
2008-2025
Fundación Dialnet
· Todos los derechos reservados
Accesibilidad
Aviso Legal
Coordinado por:
I
nicio
B
uscar
R
evistas
T
esis
Libr
o
antiguo
A
u
tores
Ayuda
R
e
gistrarse
¿En qué podemos ayudarle?
×
Buscar en la ayuda
Buscar