Ir al contenido

Documat


An Algorithmic Approach to Equitable Total Chromatic Number of Graphs

  • Vivik J., Veninstine [1] ; G., Girija [2]
    1. [1] Karunya University

      Karunya University

      India

    2. [2] Government Arts College.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 36, Nº. 2, 2017, págs. 307-324
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172017000200307
  • Enlaces
  • Referencias bibliográficas
    • Citas [1] BONDY, J. A. (1976) Graph Theory with Applications. New York: The Macmillan Press Ltd.
    • [2] HARARY, FRANK. (1969) Graph Theory. [s.l.]: Narosa Publishing home.
    • [3] KUN, GONG. (2008) Equitable Total Coloring of Some Join Graphs. EN: Journal of Mathematical Research Exposition, 28(4). [s.l.: s.n.],...
    • [4] HUNG-LIN FU. (1994) Some results on equalized total coloring. EN: Congr. Numer. 102. [s.l.: s.n.], 111-119.
    • [5] GANG, M. A. (2012) The equitable total chromatic number of some join graphs. EN: Open Journal of Applied Sciences. World Congress of Engineering...
    • [6] GANG, M. A. (2012) On the Equitable Total Coloring of Multiple Join-graph. EN: Journal of Mathematical Research and Exposition, 27(2)....
    • [7] MEYER, W. (1973) Equitable Coloring. EN: Amer. Math. Monthly, 80. [s.l.: s.n.], 920-922.
    • [8] SANCHEZ - ARROYO, A. (1989) Determining the total coloring number is NPHard. EN: Discrete Math, 78. [s.l.: s.n.], 315-319.
    • [9] VIZING, V. G. (1964) On an estimate of the chromatic class of a p-graph. EN: Metody Diskret. Analiz., 5. [s.l.: s.n.], 25-30.
    • [10] WEI-FAN WANG. (2002) Equitable total coloring of graphs with maximum degree 3. EN: Graphs Combin, 18. [s.l.: s.n.], 677-685.
    • [11] TONG CHUNLING. (2009) Equitable total coloring of Cm2Cn. EN: Discrete Applied Mathematics, 157. [s.l.: s.n.], 596-601.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno