Ir al contenido

Documat


On structure and commutativity of near-rings

  • Abujabal, H. A. S. [1] ; Obaid, M. A. [1] ; Khan, M. A. [1]
    1. [1] King Abdulaziz University

      King Abdulaziz University

      Arabia Saudí

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 19, Nº. 2, 2000, págs. 113-124
  • Idioma: inglés
  • DOI: 10.22199/S0716-09172000000200002
  • Enlaces
  • Resumen
    • The aim of this paper is to generalize the results in [1] and [13]. Here, we are interested in two problems concerning certain classes of near rings satisfying one of the following polynomials identities :(∗) For each x; y in a near-ring N, there exist positive integers t = (x; y) ≥ 1 and s = s (x; y) > 1 such that xy = ±ysxt.(∗∗) For each x; y in a near-ring N, there exist positive integers t = t (x; y) ≥ 1 and s = s (x; y) > 1 such that xy = ±xtys.

  • Referencias bibliográficas
    • Citas 1. H. E. Bell, Certain near rings are rings. J. London Math. Soc., 4, pp. 264 − 270, (1971).
    • H. E. Bell, A commutativity theorem for near rings, Canad. Math. Bull., 20, pp. 25 − 28, (1977).
    • H. E. Bell, A commutativity for rings, Canad. J. Math., 28, pp. 986 − 989, (1976).
    • H. E. Bell and S. Ligh, Some decomposition theorems for periodic rings and near rings, Math. J. Okayama Univ., 31, pp. 93 − 99, (1989).
    • J. R. Clay, The near rings on groups of low order, Math. Z., 104, pp. 364 − 371, (1968).
    • J. R. Clay, Near rings, geneses and applications, Oxford Univ. Press, U. K. (1992).
    • A. Frohlich, Distributively generated near rings, Proc. London Math. Soc., 8, pp. 76 − 94, (1958)
    • I. N. Herstein, A note on rings with central nilpotent elements, Proc. Amer. Math. Soc., 16, pp. 239 − 243, (1989).
    • S. Ligh, On Boolean near-rings, Bull. Austral. Math. Soc., 1, pp. 375 − 379; (1969).
    • S. Ligh and J. Luh, Some commutativity theorems for rings and near-rings, Acta Math. Acad. Sci. Hungar., 28, pp. 19 − 23, (1976).
    • S. Ligh and H. Luh, Direct sum of J. rings and zero rings, Amer. Math. Monthly, 96, pp. 40 − 41; (1989).
    • G. Pilz, Near-rings, (Second Edition), North-Holland, Mathematics Studies 23, Amsterdam, (1983).
    • M. A. Quadri, M. Ashraf and A. Ali, Certain conditions under which near-rings are rings, Bull. Austral. Math. Soc., 42, pp. 91 − 94, (1990).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno