Ir al contenido

Documat


Existence of periodic solutions of neutral functional differential equations with unbounded delay

  • Henríquez Miranda, Hernán R. [1]
    1. [1] Universidad de Santiago.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 19, Nº. 3, 2000, págs. 305-329
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172000000300006
  • Enlaces
  • Resumen
    • In this work we establish a result of existence of periodic solutions for quasi-linear partial neutral functional differential equations with unbounded delay on a phase space defined axiomatically.

  • Referencias bibliográficas
    • Citas [1] K. Deimling, Non Linear Functional Analysis, Springer-Verlag, Berlin, (1985).
    • [2] N. Dunford and J. T. Schwartz, Linear Operators. Part I, John Wiley and Sons, New York, (1988).
    • [3] J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcialaj Ekvac., 21, pp. 11-41, (1978).
    • [4] H. R. Henríquez, Periodic solutions of quasi-linear partial functional differential equations with unbounded delay. Funkcialaj Ekvac....
    • [5] H. R. Henríquez, On non-exact controllable systems, Int. J. Control, 42(1), pp. 71-83, (1985).
    • [6] E. Hernández and H. R. Henríquez, Existence Results for partial neutral functional differential equations with unbounded delay, J. Math....
    • [7] E. Hernández and H. R. Henríquez, Existence of periodic solutions of partial neutral functional differential equations with unbounded...
    • [8] Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lect. Notes in Maths., 1473. SpringerVerlag,...
    • [9] C-M. Marle, Mesures et Probabilit´es, Hermann, Paris, (1974).
    • [10] R. H. Martin, Nonlinear Operators & Differential Equations in Banach Spaces, Robert E. Krieger Publ. Co., Florida, (1987).
    • [11] R. Nagel, One-parameter Semigroups of Positive Operators, Lect. Notes in Maths. 1184 (editor), Springer-Verlag, Berlin, (1986).
    • [12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, (1983).
    • [13] B. N. Sadovskii, On a fixed point principle. Funct. Anal. Appl., 1, pp. 74-76, (1967).
    • [14] S. J. Shin, An existence theorem of a functional differential equation, Funkcialaj Ekvac. 30, pp. 19-29, (1987).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno