Citas [1] J. Bona, G. Ponce, J. C. Saut and M. M. Tom. A model system for strong interaction between internal solitary waves, Comm. Math....
[2] J. Bona and R. Scott. Solutions of the Korteweg - de Vries equation in fractional order Sobolev space, Duke Math. J. 43, 87-99, (1976).
[3] J. Bona and R. Smith. The initial value problem for the Korteweg - de Vries equation, Philos. Trans. Royal Soc. London, Ser. A, 278, pp....
[4] J. Bona and J.C. Saut. Dispersive blow-up of solutions of generalized Korteweg - de Vries equation, Journal of Diff. equations., 103,...
[5] H. Cai. Dispersive smoothing effect for generalized and high order KdV type equations. Journal of Diff. equations., 136, pp.191-221, (1997).
[6] A. Cohen. Solutions of the Korteweg - de Vries equations from irregular data, Duke Math., J., Vol. 45, springer, pp. 149-181, (1991).
[7] W. Craig and J. Goodman. Linear dispersive equations of Airy Type, J. Diff. equations., Vol. 87, pp. 38-61, (1990).
[8] W. Craig, T. Kappeler and W. Strauss. Infinite gain of regularity for dispersive evolution equations, Microlocal Analysis and Nonlinear...
[9] W. Craig, T. Kappeler and W. Strauss. Gain of regularity for equations of Korteweg - de Vries type, Ann. Inst. Henri Poincar´e, Vol. 9,...
[10] P. Constantin and J. C. Saut. Local smoothing properties of dispersive equations, Journal A.M.S., Nro. 1, pp. 413-439, (1988).
[11] J. Ginibre and G. Velo. Conmutator expansions and smoothing properties of generalized Benjamin - Ono equations. Ann. Inst. Henri Poincar´e,...
[12] N. Hayashi, K. Nakamitsu and M. Tsutsumi. On solutions on the initial value problem for the nonlinear Schrodinger equations in One Space...
[13] N. Hayashi, K. Nakamitsu and M. Tsutsumi. On solutions of the initial value problem for nonlinear Schrodinger equations, J. of Funct....
[14] N. Hayashi and T. Ozawa. Smoothing effect for some Schrodinger equations, J. of Funct. Anal., Vol. 85, pp. 307-348, (1989).
[15] T. Kato. Quasilinear equations of evolutions with applications to partial differential equations, Lecture notes in mathematics, Springer-Verlag,...
[16] T. Kato. On the Cauchy problem for the (generalized) Korteweg - de Vries equations, Adv. in Math. Suppl. Studies, Studies in Appl. Math.,...
[17] T. Kato and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Applied Math., Vol. 41, pp. 891-907,...
[18] C. Kenig, G. Ponce and L. Vega. On the (generalized) Korteweg - de Vries equation, Duke Math. J., Vol. 59 (3), pp. 585-610, (1989).
[19] C. Kenig, G. Ponce and L. Vega. Oscillatory integrals and regularity equations, Indiana Univ. Math., J., Vol. 40, pp. 33-69, (1991)
[20] S. N. Kruzhkov and A.V. Faminskii. Generalized solutions to the Cauchy problem for the Korteweg - de Vries equations, Math. U.S.S.R....
[21] G. Ponce. Regularity of solutions to nonlinear dispersive equations, J. Diff. Eq., Vol. 78, pp. 122-135, (1989).
[22] J.C. Saut and R. Temam. Remark on the Korteweg - de Vries equation, Israel J. Math., Vol. 24, pp. 78-87, (1976).
[23] P. Sjolin. Regularity of solutions to the Schrodinger equation. Duke Math. J., Vol. 55, pp. 699-715, (1987).
[24] R. Temam. Sur un probleme non-lineaire, J. Math. Pures Appl., Vol. 48, pp. 159-172, (1969).