Ir al contenido

Documat


On the volumetric entropy in the non compact case

  • Navas, Andrés [1]
    1. [1] École Normale Supérieure de Lyon

      École Normale Supérieure de Lyon

      Arrondissement de Lyon, Francia

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 21, Nº. 1, 2002, págs. 97-108
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172002000100006
  • Enlaces
  • Resumen
    • We give an example of a non compact riemannian manifold with finite volume for which the limit corresponding to the classical definition of the volumetric entropy does not exist. This confirms the fact that in the non compact finite volume case, the natural definition is given by the critical exponent of the mean growth rate for the volume on the riemannian covering.

  • Referencias bibliográficas
    • Citas [Bea] A.Beardon. The geometry of discrete groups. GTM 91, Springer Verlag (1983).
    • [Bes] L.Bessieres. Sur le volume minimal des variétés ouvertes. Ann. Inst. Fourier (Grenoble) 50 (2000), pp.965-980.
    • [BCG] G.Besson, G.Courtois & S.Gallot. Entropies et rigidités des espaces localement symétriques. Geometric and Functional Analysis 5...
    • [CF] C.Connell & B.Farb. Minimal entropy rigidity for lattices in products of rank one symmetric spaces. Preprint: math.uchicago.edu/...
    • [Gr] M.Gromov. Volume and bounded cohomology. Publ. Math IHES 56, (1981), pp.213-307.
    • [Ma] A.Manning. Topological entropy for geodesic flows. Ann. Math. 110 (1979), pp.565-573.
    • [Pa] G.Paternain. Geodesic flows. Birkhäuser (1999).
    • [1] G. Prasad. Strong rigidity of Q-rank 1 lattices. Inv. Math. 21 (1973), pp.255-286.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno