Ir al contenido

Documat


Asymptotic equilibrium for certain type of differential equations with maximum

  • González, Patricio [1] ; Pinto, Manuel [2]
    1. [1] Universidad Arturo Prat

      Universidad Arturo Prat

      Iquique, Chile

    2. [2] Universidad de Chile

      Universidad de Chile

      Santiago, Chile

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 21, Nº. 1, 2002, págs. 9-19
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172002000100002
  • Enlaces
  • Resumen
    • In this work we obtain asymptotic representations for the solutions of certain type of differential equations with maximum. We deduce the asymptotic equilibrium for this class of differential equations.

  • Referencias bibliográficas
    • Citas [1] N. R. Bantsur and E. P Trofimchuk, Existence and stability of the periodic and almost periodic solutions of quasilinear systems...
    • [2] D. D. Bainov and N. G. Kazakova, A finite difference method for solving the periodic problem for autonomous differential equations with...
    • [3] V. H. Cortés and P. González, Levinson’s theorem for impulsive differential equations, Analysis 14, pp. 113-125, (1994).
    • [4] P. González and M. Pinto, Stability Properties of the Solutions of the Nonlinear Functional Differential Systems. J. Math. Anal. Appl....
    • [5] P. González and M. Pinto, Asymptotic behavior of impulsive differential equations, Rocky Mountain Journal of Mathematics, 26, pp. 165...
    • [6] P. González and M. Pinto, Asymptotic behavior of the solutions of certain complex differential equations, Differential Equations and Dinamical...
    • [7] J. Guzman and M. Pinto, Global existence and asymptotic behavior of solutions of nonlinear differential equations, J, Math. Anal. Appl....
    • [8] A. D. Myshkis, On some problems of the theory of differential equations with deviating argument, Russ. Math. Surv. 32 (2), pp. 181 - 210,...
    • [9] M. Pinto, Asymptotic Integration of System Resulting from a Perturbation of an h-system, J. Math. Anal. Appl. 131, pp. 144-216, (1988).
    • [10] M. Pinto, Impulsive Inequalities of Bihari Type. Libertas Math. 12, pp. 57-70, (1993).
    • [11] A. M. Samoilenko, E. P. Trofimchuk and N. R. Bantsur, Periodic and almost periodic solutions of the systems of differential equations...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno