Ir al contenido

Documat


Periodic strong solutions of the magnetohydrodynamic type equations

  • Notte Cuello, Eduardo A. [1] ; Rojas Medar, María D. [1] ; Rojas Medar, Marko Antonio [2] Árbol académico
    1. [1] Universidad de Antofagasta

      Universidad de Antofagasta

      Antofagasta, Chile

    2. [2] Universidade Estadual de Campinas

      Universidade Estadual de Campinas

      Brasil

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 21, Nº. 3, 2002, págs. 199-224
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172002000300001
  • Enlaces
  • Resumen
    • We obtain, using the spectral Galerkin method together with compactness arguments, existence and uniqueness of periodic strong solutions for the magnetohydrodynamic type equations.

  • Referencias bibliográficas
    • Citas [1] Amann, H., Ordinary Differential Equations, W&G, 1990.
    • [2] Amrouche, G. and Girault, V., On the existence and regularity of the solutions of Stokes problem in arbitrary dimension, Proc. Japan Acad.,...
    • [3] Berger, M.S. Nonlinearity and Functional Analysis, Acad. Press,1987.
    • [4] Berselli, L.C. and Ferreira, J., On the magnetohydrodynamic type equations in a new class of non-cylindrical domains, To appear in B.U.M.I..
    • [5] Boldrini, J.L. And Rojas-Medar, M.A., On a system of evolution equations of Magnetohydrodinamic type, Mat. Cont., 8, pp. 1-19, 1995.
    • [6] Burton, T.A. Stability and periodic solutions of ordinary and functional differential equations, Academic Press, (1985).
    • [7] Constantin, P. and Foias C., Navier-Stokes equations, The Univ. Chicago Press, Chicago and London, (1988).
    • [8] Damásio, P. and Rojas-Medar, M.A., On some questions of the weak solutions of evolution equations for magnetohydrodynamic type, Proyecciones...
    • [9] Fujita, H. and Kato, T., On the Navier-Stokes initial value problem I, Arch. Rat. Mech. Anal. 16, pp. 269-315, (1964).
    • [10] Giga, Y. and Miyakawa, T., Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal. 89, pp. 267-281, (1985).
    • [11] Heywood, J. G. - The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J., 29, pp. 639-681,...
    • [12] Kato, H., Existence of periodic solutions of the Navier-Stokes equations, J. Math. Anal. and Appl. 208, pp. 141-157, (1997).
    • [13] Lassner, G., Uber Ein Rand-Anfangswert - Problem der Magnetohydrodinamik, Arch. Rat. Mech. Anal. 25, pp. 388-405, (1967).
    • [14] Lions, J. L., Quelques Méthods de Résolution des Problémes aux Limits Non Linéares, Dunod, Paris, (1969).
    • [15] Pikelner, S.B., Grundlangen der Kosmischen Elektrohydrodynamik, Moscou, (1966).
    • [16] Notte-Cuello, E. A. and Rojas-Medar, M. A., On a system of evolution equations of magnetohydrodynamic type: an iterational approach....
    • [17] Rojas-Medar, M.A. and Beltrán-Barrios, R., The initial value problem for the equations of magnetohydrodynamic type in noncylindrical...
    • [18] Rojas-Medar, M.A. and Boldrini, J. L., Global strong solutions of equations of magnetohydrodynamic type, J. Australian Math. Soc., Serie...
    • [19] Serrin, J., A note on the existence of periodic solutions of the NavierStokes equations, Arch. Rat. Mech. Anal. 3, pp. 120-122, (1959).
    • [20] Simon J., Nonhomogeneous viscous incompressible fluids: existence of velocity, density and pressure, SIAM J. Math. Anal. , V. 21, N 5,...
    • [21] Schlüter, A., Dynamic des Plasmas, I and II. Z. Naturforsch. 5a, pp. 72-78, (1950); 6a, pp. 73-79, (1951).
    • [22] Temam, R., Navier-Stokes equations, North-Holland, Amsterdam, Rev. Edit., (1979).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno