Ir al contenido

Documat


Orlicz-Pettis theorems for multiplier convergent operator valued series

  • Swartz, Charles [1]
    1. [1] New Mexico State University

      New Mexico State University

      Estados Unidos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 23, Nº. 1, 2004, págs. 61-72
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172004000100005
  • Enlaces
  • Resumen
    • Let X, Y be locally convex spaces and L(X, Y ) the space of continuous linear operators from X into Y . We consider 2 types of multiplier convergent theorems for a series ∑ Tₕ in L(X, Y ). First, if λ is a scalar sequence space, we say that the series ∑ Tₕ is λ multiplier P convergent for a locally convex topology τ on L(X, Y ) if the series ∑ tₕTₕ is τ convergent for every t = {tₕ} ∈ λ. We establish conditions on λ which guarantee that a λ multiplier convergent series in the weak or strong operator topology is λ multiplier convergent in the topology of uniform convergence on the bounded subsets of X. Second, we consider vector valued multipliers. If E is a sequence space of X valued sequences, the series ∑ Tₕ is E multiplier convergent in a locally convex topology η on Y if the series ∑ Tₕxₕ is η convergent for every x = {xₕ} ∈ E. We consider a gliding hump property on E which guarantees that a series ∑ Tₕ which is E multiplier convergent for the weak topology of Y is E multiplier convergent for the strong topology of Y .

  • Referencias bibliográficas
    • Citas [B] G. Bennett, Some inclusion theorems for sequence spaces, Pacific J. Math., 46, pp. 17-30, (1973).
    • [BL] J. Boos and T. Leiger, Some distinguished subspaces of domains of operator valued matrices, Results Math., 16, pp. 199-211, (1989).
    • [D] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, N.Y., (1984).
    • [DF] J. Diestel and B. Faires, Vector Measures, Trans. Amer. Math. Soc., 198, pp. 253-271, (1974).
    • [DS] N. Dunford and J. Schwartz, Linear Operators I, Interscience, N. Y., (1958).
    • [FP] M. Florencio and P. Paul, A note on λmultiplier convergent series, Casopis Pro Pest. Mat., 113, pp. 421-428, (1988).
    • [G] D. J. H. Garling, The β- and γ-duality of sequence spaces, Proc. Cambridge Phil. Soc., 63, pp. 963-981, (1967).
    • [KG] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, N. Y., (1981).
    • [LCC] Li Ronglu, Cui Changri and Min Hyung Cho, An invariant with respect to all admissible (X,X’)-polar topologies, Chinese Ann. Math.,3,...
    • [S1] C. Stuart, Weak Sequential Completeness in Sequence Spaces, Ph.D. Dissertation, New Mexico State University, (1993).
    • [S2] C. Stuart, Weak Sequential Completeness of β-Duals, Rocky Mountain Math. J., 26, pp. 1559-1568, (1996).
    • [SS] C. Stuart and C. Swartz, Orlicz-Pettis Theorems for Multiplier Convergent Series, Journal for Analysis and Appl.,17, pp. 805-811, (1998).
    • [Sw1] C. Swartz, An Introduction to Functional Analysis,Marcel Dekker, N.Y., (1992).
    • [Sw2] C. Swartz, Infinite Matrices and the Gliding Hump, World Sci.Publ., Singapore, (1996).
    • [Sw3] C. Swartz, A multiplier gliding hump property for sequence spaces, Proy. Revista Mat., 20, pp. 19-31, (2001).
    • [W] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, N. Y., (1978).
    • [WL] Wu Junde and Li Ronglu, Basic properties of locally convex Aspaces, Studia Sci. Math. Hungar., to appear.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno