Ir al contenido

Documat


On automatic surjectivity of some additive transformations

  • Ech-chérif El Kettani, Mustapha [1] ; El Bouchibti, El Houcine [1]
    1. [1] Euro-Mediterranean University of Fes

      Euro-Mediterranean University of Fes

      Fes-Medina, Marruecos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 23, Nº. 2, 2004, págs. 111-121
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172004000200004
  • Enlaces
  • Resumen
    • Let X be an infinite dimensional Banach space and let Φ : B(X) → B(X) be a spectrum preserving additive transformation. We show that if the image of quasi-nilpotent operators contains all quasi-nilpotent operators, then Φ is an automophism or an antiautomorphism of B(X).

  • Referencias bibliográficas
    • Citas [1] B. Aupetit, Une généralisation du théoreme de Gleason-KahaneZelazko pour les algebres de Banach, Pacific. J. Math 85, pp. 11-17,...
    • [2] B. Aupetit and H. du Toit Mouton, Trace and determinant in Banach algebras, Studia. Math 121, pp. 115-136, (1996).
    • [3] B. Aupetit, Sur les transformations qui conservent le spectre, Banach. Algebras 97 (De Gryter, Berlin, pp. 55-78, (1998).
    • [4] B. Aupetit, A Primer On Spectral Theory (Springer New-York, (1991).
    • [5] M. Bresar and P. Semrl, Linear maps preserving the spectral radius, J. Funct. Anal 142, pp. 360-168, (1996).
    • [6] Fillmore, Sums of operators with square-zero, Acta. Sci. Math. Szeged. 28, pp. 285-288, (1967).
    • [7] A. A. Jafarian and A.R. Sourour, Spectrum preserving linear maps, J. Funct. Anal 66, pp. 255-261, (1986).
    • [8] M. Omladic and P. Semrl, Spectrum preserving additive maps, Linear. Algebras. Appl 153, pp. 67-72, (1991).
    • [9] W. Rudin, Functional Analysis.
    • [10] P. Semrl , Spectrally bounded linear maps on B(H), Quat. J. Math. Oxford (2) 49, pp. 87-92, (1998).
    • [11] P. Semrl, Linear maps that preserve the nilpotent operators, Acta. Sci. Math (szeged) 61, pp. 523-534, (1995).
    • [12] S. Sakai, C∗-Algebras and W ∗-Algebras (Springer,New-York, (1971).
    • [13] A.R. Sourour , Invertibility preserving linear maps on L(X), Trans. Amer. Soc 348, pp. 13-30, (1996).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno