Ir al contenido

Documat


Existence of solutions for unilateral problems with L¹ data in Orlicz spaces

  • Aharouch, L. [1] ; Rhoudaf, Mohamed [1]
    1. [1] Sidi Mohamed Ben Abdellah University

      Sidi Mohamed Ben Abdellah University

      Fes-Medina, Marruecos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 23, Nº. 3, 2004, págs. 293-317
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172004000300007
  • Enlaces
  • Resumen
    • This article is concerned with the existence result of the unilateral problem associated to equations of the typeAu + g(x, u, ∇u) = f,in Orlicz spaces, where f ∈ L¹(Ω), the term g is a nonlinearity having natural growth and satisfying the sign condition. Some stability and positivity properties of solutions are proved.

  • Referencias bibliográficas
    • Citas [1] R. Adams , Sobolev espaces,Academic Press, New York, (1975).
    • [2] P. Bénilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre and J. L. Vazquez, An L1-theory of existence and uniqueness of nonlinear elliptic...
    • [3] A. Benkirane , Approximation de type de Hedberg dans les espaces WmLlogL(Ω) et application, Ann. Fac. Sci. Toulouse. 11, 4 , pp. 67-78,...
    • [4] A. Benkirane and A. Elmahi, An existence theorem for a strongly nonlinear elliptic problems in Orlicz spaces, Nonlinear Anal. T. M. A.,...
    • [5] A. Benkirane and A. Elmahi, A strongly nonlinear elliptic equation having natural growth terms and L1 data, Nonlinear Anal. T. M. A.,...
    • [6] A. Benkirane, A. Elmahi, and D. Meskine , An existence theorem for a class of elliptic problems in L1, Applicationes Mathematicae., 29,...
    • [7] A. Benkirane and J. P. Gossez, An approximation theorem for higher order Orlicz-Sobolev spaces, Studia Math., 92, pp. 231-255, (1989).
    • [8] G. Dalmaso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm....
    • [9] A. Elmahi, D. Meskine, Unilateral elliptic problems in L1 with natural growth terms, To appear Nonlinear and convex analysis.
    • [10] M. Fuchs and L. Gongbao, L∞-bounds for elliptic equations on Orlicz-Sobolev spaces, Archiv der Mathematik, 72, pp. 293-297, (1999).
    • [11] M. Fuchs and G. Seregin, Variational methods for fluids for PrandtlEyring type and plastic materials with logarithmic hardening, Preprint...
    • [12] M. Fuchs and G. Seregin, A regurality theory for variational integrals with LlnL-growth, Calc. of Variations , 6, pp. 171-187, (1998).
    • [13] M. Fuchs and G. Seregin, Regurality for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening,...
    • [14] J. P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer....
    • [15] J. P. Gossez and V. Mustonen, Variational inequalities in OrliczSobolev spaces, Nonlinear Anal. 11, pp. 379-392, (1987).
    • [16] M. A. Krasnoselskii and Y. B. Rutikii , Convex functions and Orlicz spaces, Noordhoff Groningen, (1969).
    • [17] A. Porretta, Existence for elliptic equations in L1 having lower order terms with natural growth, Portugal. Math. 57, pp. 179-190, (2000).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno