Ir al contenido

Documat


Compensators for singular control systems with delays in outputs

  • Henríquez Miranda, Hernán R. [2] ; Castillo, Genaro [1]
    1. [1] Universidad de Talca

      Universidad de Talca

      Provincia de Talca, Chile

    2. [2] Universidad de Santiago.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 23, Nº. 3, 2004, págs. 253-279
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172004000300005
  • Enlaces
  • Resumen
    • In this paper we study the design of dynamic compensators for linear singular control systems described by the equation Ex 0(t) = Ax(t) + Bu(t) with time delayed observed output y(t) = Cx(t - r). The proposed compensators are applied to solve the regulator problem for the mentioned systems with controlled output z(t) = Dx(t).

  • Referencias bibliográficas
    • Citas [1] R. Bellman and K. Cooke, “Differential-Difference Equations,” Academic‏ Press, New York, (1963).‏
    • [2] K. P. M. Bhat and H. N. Koivo, An observer theory for time-delay systems,‏ IEEE Trans. Aut. Contr. 21, pp. 266-269, (1976).‏
    • [3] S. D. Brierley, J. N. Chiasson, E. B. Lee and S. H. Zak, On stability independent of delay for linear systems, IEEE Trans. Aut. Contr....
    • [4] S. L. Campbell, “Singular Systems of Differential Equations,” Pitman Advanced Publishing Program, London, (1980).‏
    • [5] S. L. Campbell, “Singular Systems of Differential Equations II,” Pitman Advanced Publishing Program, London, (1982).‏
    • [6] B-S. Chen, S-S. Wang and H-C. Lu, Stabilization of time-delay systems containing saturating actuators, Int. J. Control 47 (3), pp. 867-881,...
    • [7] L. Dai, “ Singular Control Systems,” Lect. Notes in Control and Information‏ Sciences, 118. Springer Verlag, Berlin, (1989).‏
    • [8] R. Datko, Remarks concerning the asymptotic stability and stabilization of‏ linear delay differential equations, J. Math. Anal. Appl.,...
    • [9] G. Doetsh, “ Introduction to the Theory and Application of the Laplace‏ Transformation,” Springer-Verlag, Berlin, (1974).‏
    • [10] E. Emre, Regulation of linear systems over rings by dynamic output feedback,‏ Systems and Control Letters 3, pp. 57-62, (1983).‏
    • [11] E. Emre and P. P. Khargonekar, Regulation of split linear systems over rings:‏ coefficient-assignment and observers, IEEE Trans. Aut....
    • [12] E. Emre and G. J. Knowles, Control of linear systems with fixed noncommensurate point delays, IEEE Trans. Aut. Contr. 29(12), pp. 1083-1090,...
    • [13] M. M. Fahmy and J. O’Reilly, Observers for descriptor systems, Int. J. Control, 49, pp. 2013-2028, (1989).‏
    • [14] F. W. Fairman and A. Kumar, Delayless observers for systems with delay,‏ IEEE Trans. Aut. Contr. 31(3), pp. 258-259, (1986).‏
    • [15] A. Favini and A. Yagi, “Degenerate Differential Equations in Banach Spaces”,‏ Marcel Dekker, New York, (1999).‏
    • [16] Y. A. Fiagbedzi and A. E. Pearson, Feedback stabilization of linear autonomous time lag systems, IEEE Trans. Aut. Contr. 31(9), pp. 847-855,‏...
    • [17] A. Fuchs, V. Lovass-Nagy and R. Mukundan, Output regulator problem of‏ time-invariant discrete-time descriptor systems, Int. J. Control,...
    • [18] A. Halanay, “Differential Equations,” Academic Press, New York, (1966).‏
    • [19] J. Hale and S. M. Verduyn Lunel, “Introduction to Functional Differential‏ Equations,” Springer Verlag, New York, (1993).‏
    • [20] M. L. J. Hautus, Controllability and observability conditions of linear autonomous systems, Indag. Math., 31(1969), pp. 443-448, (1969).‏
    • [21] H. Henríquez, Regulator problem for linear distributed control systems with‏ delays in outputs, Lect. Notes in Pure and Applied Maths....
    • [22] H. R. Henríquez and G. Castillo G., Compensators for singular control systems with small delays in outputs. Revista Proyecciones, 17(1),...
    • [23] E. W. Kamen, On the relationship between zero criteria for two-variable‏ polynomials and asymptotic stability of delay differential equations,...
    • [24] E. W. Kamen, Linear systems with commensurate time delays: stability and‏ stabilization independent of delay, IEEE Trans. Aut. Contr....
    • [25] E. W. Kamen, Correction to : Linear systems with commensurate time delays:‏ stability and stabilization independent of delay, IEEE Trans....
    • [26] E. W. Kamen, P. P. Khargonekar and A. Tannenbaum, Stabilization of‏ time-delay systems using finite-dimensional compensators, IEEE Trans....
    • [27] E. W. Kamen, P. P. Khargonekar and A. Tannenbaum, Proper stable Bezout‏ factorization and feedback control of linear time-delay systems,...
    • [28] J. Klamka, Observer for linear feedback control of systems with distributed‏ delays in controls and outputs, Systems and Control Letters,...
    • [29] F. N. Koumboulis and P. N. Paraskevopoulos, On the pole assignment of‏ generalized state space systems via state feedback, IEE Proceedings-D,...
    • [30] R. M. Lewis and B. Anderson, Necessary and sufficient Conditions for delayindependent stability of linear autonomous systems, IEEE Trans....
    • [31] A. Z. Manitius, and A. W. Olbrot, Finite spectrum assignment problem for‏ systems with delays, IEEE Trans. Aut. Contr. 24(4), pp. 541-553,...
    • [32] N. Minamide, N. Arii and Y. Uetake, Design of observers for descriptor systems using a descriptor standard form, Int. J. Control, 50,...
    • [33] A. W. Olbrot, Stabilizability, detectability and spectrum assignment for linear autonomous systems with general time delays, IEEE Trans....
    • [34] J. O’Reilly, “Observers for Linear Systems,” Academic Press, London, (1983).‏
    • [35] L. Pandolfi, Feedback stabilization of functional differential equations, Boll.‏ Un. Mat. Ital., 12, pp. 626-635.‏
    • [36] P. N. Paraskevopoulus and F. N. Koumboulis, Decoupling and pole assignment in generalized state space systems, IEE Proceedings-D, 138(6),...
    • [37] P. N. Paraskevopoulos and F. N. Koumboulis, Unifyng approach to observers‏ for regular and singular systems, IEE Proceedings-D, 138(6),...
    • [38] P. N. Paraskevopoulos, F. N. Koumboulis, K. G. Tzierakis and G. E. Panagiotakis, Observer design for generalized state space systems...
    • [39] A. Pazy, “Semigroups of Linear Operators and Applications to Partial Differential Equations,” Springer-Verlag, New York, (1983).‏
    • [40] D. Salamon, Observers and duality between observation and state feedback‏ for time delay systems, IEEE Trans. Aut. Contr. 25(6), pp....
    • [41] J. M. Schumacher, A direct approach to compensator design for distributed‏ parameter systems, SIAM J. Contr. Optimiz. 21(6), pp. 823-836,...
    • [42] Y. Uetake, Pole assignment and observer design for continuous descriptor‏ systems, Int. J. Control, 50, pp. 89-96, (1989).‏
    • [43] Q-G. Wang, Y. X. Sun and C. H. Zhou, Finite spectrum assignment for‏ multivariable delay systems in the frequency domain, Int. J. Control...
    • [44] K. Watanabe and M. Ito, An observer for linear feedback control laws of multivariable systems with multiple delays in controls and outputs,...
    • [45] K. Watanabe, M. Ito and M. Kaneko, Finite spectrum assignment problem for‏ systems with multiple commensurate delays in state variables,...
    • [46] K. Watanabe, M. Ito and M. Kaneko, Finite spectrum assignment problem‏ for systems with multiple commensurate delays in states and control,...
    • [47] K. Watanabe and T. Ouchi, An observer of systems with delays in state‏ variables, Int. J. Control 41(1), pp. 217-229, (1985).‏
    • [48] K. Watanabe, Finite spectrum assignment and observer for multivariable systems with commensurate delays, IEEE Trans. Aut. Contr. 31(6),...
    • [49] W. M. Wonham, “Linear Multivariable Control: A Geometric Approach,”‏ Springer Verlag, Berlin, (1979).‏
    • [50] C-W. Yang and H-L. Tan, Observer design for singular systems with unknown‏ inputs, Int. J. Control, 49(6), pp. 1937-1946, (1989).‏

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno