Ir al contenido

Documat


Uniform boundedness in vector-valued sequence spaces

  • Swartz, Charles [1]
    1. [1] New Mexico State University

      New Mexico State University

      Estados Unidos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 23, Nº. 3, 2004, págs. 235-240
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172004000300003
  • Enlaces
  • Resumen
    • Let µ be a normal scalar sequence space which is a K-space under the family of semi-norms M and let X be a locally convex space whose topology is generated by the family of semi-norms X. The space µ{X} is the space of all X valued sequences x = {xk} such that {q(xₖ)} ∈ µ{X} for all q ∈ X. The space µ{X} is given the locally convex topology generated by the semi-norms πpq(x) = p({q(xₖ)}), p ∈ X, q ∈ M.We show that if µ satisfies a certain multiplier type of gliding hump property, then pointwise bounded subsets of the β-dual of µ{X} with respect to a locally convex space are uniformly bounded on bounded subsets of µ{X}.

  • Referencias bibliográficas
    • Citas [1] J. Boos and T. Leiger, Some distinguished subspaces of domains of operator valued matrices, Results Math., 16, pp. 199-211, (1989).
    • [2] M. Florencio and P. Paul, Barrelledness conditions on certain vector valued sequence spaces, Arch. Math., 48, pp. 153-164, (1987).
    • [3] J. Fourie, Barrelledness Conditions on Generalized Sequence Spaces, South African J. Sci., 84, pp. 346-348, (1988).
    • [4] A. Pietsch, Verallgemeinerte vollkommene Folgenraume, Schrift. Inst. Math., Deutsch Akad. Wiss. Berlin, Heft 12, Acad. Verlag, Berlin,...
    • [5] R. Rosier, Dual Spaces of Certain Vector Sequence Spaces, Pacific J. Math., 46, pp. 487-501, (1973).
    • [6] C. Swartz, Introduction to Functional Analysis, Marcel Dekkar, N. Y., (1992).
    • [7] C. Swartz, Infinite Matrices and the Gliding Hump, World. Sci. Publ., Singapore, (1996).
    • [8] C. Swartz, A Multiplier Gliding hump Property for Sequence Spaces, Proyecciones Revista de Matemática, Vol. 20, pp. 19-31, (2001).
    • [9] A. Wilansky, Modern Methods in Topological Vector Spaces, McGrawHill, N. Y., (1978).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno