Ir al contenido

Documat


Uniform stabilization of a plate equation with nonlinear localized dissipation

  • Pazoto, Ademir F. [1] ; Coelho, Lucicléia [2] ; Coimbra Charao, Ruy [2]
    1. [1] Universidade Federal do Rio de Janeiro

      Universidade Federal do Rio de Janeiro

      Brasil

    2. [2] Universidade Federal de Santa Catarina

      Universidade Federal de Santa Catarina

      Brasil

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 23, Nº. 3, 2004, págs. 205-234
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172004000300002
  • Enlaces
  • Resumen
    • We study the existence and uniqueness of a plate equation in a bounded domain of Rⁿ, with a dissipative nonlinear term, localized in a neighborhood of part of the boundary of the domain. We use techniques from control theory, the unique continuation property and Nakao method to prove the uniform stabilization of the energy of the system with algebraic decay rates depending on the order of the nonlinearity of the dissipative term.

  • Referencias bibliográficas
    • Citas [1] Alabau, F., Komornik. V., Boundary observability, controlability and stabilization of linear elastodynamics systems, SIAM J. Control...
    • [2] E. Bisognin, V. Bisognin, R. Coimbra Charao, Uniform stabilization for elastic waves system with highly nonlinear localized dissipation....
    • [3] H. Brezis, Análisis funcional Teoria y aplicaciones. Alianza Editorial, Madrid, 1983.
    • [4] Coddington, E., Levinson, N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955.
    • [5] Guesmia, A., On the decay estimates for elasticity systems with some localized dissipations, Asymptotic Analysis 22 (2000), 1-13.
    • [6] A. Haraux, Semigroupes Linéaires et équations d’évolution linéaires périodiques. Université Pierre et Marie Curie, Paris, 1978.
    • [7] Horn, M. A., Nonlinear boundary stabilization of a system of anisotropic elasticity with light internal damping, Contemporary Mathematics...
    • [8] Komornik, V., Exact controllability and stabilization, the multiplier method, John Wiley Sons - Masson, Paris, 1994.
    • [9] J. U. Kim, A unique continuation property of a beam equation with variable coefficients, in estimation and control of distributed parameter...
    • [10] J. L. Lions, Exact Controllability, Stabilization and perturbations for Distributed Systems. SIAM Rev.30, 1-68, 1988.
    • [11] J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires. Gauthier - Villars, Paris, 1969.
    • [12] Martinez, P., Decay of solutions of the wave equation with a local highly degenerate dissipation, Asymptotic Analysis 19 (1999), 1-17.
    • [13] Nakao, M., Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann. 305 (1996), 403-417.
    • [14] M. Tucsnak, Stabilization of Bernoulli - Euler beam by means of a pointwise feedback force. Siam J. control Optim 39, n4, 1160-1181,...
    • [15] Tébou, L. R. T., Well-posedness and energy decay estimates for the damped wave equation with Lr localizing coefficient, Comm. in Partial...
    • [16] E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping. Comm. Partial Diff. Eqs. 15, 205-235,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno