Ir al contenido

Documat


Sharp inequalities for factorial n

    1. [1] Yunzuncu Yil University.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 27, Nº. 1, 2008, págs. 97-102
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172008000100006
  • Enlaces
  • Resumen
    • Let n be a positive integer. We provewith the best possible constantsα = 1 - 2πe-2 = 0.149663... and β = 1/6 = 0.1666666...This refines and extends a result of Sandor and Debnath, who proved that the double inequality holds with α = 0 and β = 1.

  • Referencias bibliográficas
    • Citas [1] W. Burnside, A rapidly convergent series for logN!, Messenger Math., 46, pp. 157-159, (1917).
    • [2] S. Guo, Monotonicty and concavity properties of some functions involving the gamma function with applications, J. Inequal. Pure Appl....
    • [3] M. Fichtenholz, Differential und integralrechnung II, Verlag Wiss, Berlin, (1978).
    • [4] E. A. Karatsuba, On the asymptotic representation of the Euler gamma function by Ramanujan, J. Comp. Appl. Math. 135.2, pp. 225-240, (2001).
    • [5] E. A. Karatsuba, On the computation of the Euler constant γ, Numerical Algorithms, 24, pp. 83-97, (2000).
    • [6] N. D. Mermin, Improving and improved analytical approximation to n!, Amer. J. Phys., 51, pp. 776, (1983).
    • [7] J. Sandor and L. Debnath, On certain inequalities involving the constant e and their applications, J. Math. Anal. Appl. 249, pp. 569-582,...
    • [8] W. Schuster, Improving Stirling’s formula, Arch. Math. 77, pp. 170-176, (2001).
    • [9] Y. Weissman, An improved analytical approximation to n!, Amer. J. Phys., 51, No. 9, (1983).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno