Ir al contenido

Documat


On the retrosection theorem

  • Autores: Rubén Antonio Hidalgo Árbol académico
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 27, Nº. 1, 2008, págs. 29-61
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172008000100003
  • Enlaces
  • Resumen
    • We survey some old and new results related to the retrosection theorem and some of its extensions to compact Klein surfaces, stable Riemann surfaces and stable Klein surfaces.

  • Referencias bibliográficas
    • Citas [1] L. V. Ahlfors. Finitely generated Kleinian groups, Amer. J. Math. 86‏ (1964), 413-423; 87 (1965), 759.‏
    • [2] N. L. Alling and N. Greenleaf, N. Foundations of the theory of Klein‏ surfaces. Lect. Notes in Math. 219, Springer-Verlag, (1971).‏
    • [3] L. Bers. Automorphic forms for Schottky groups,. Adv. in Math. 16,‏ pp. 332-361, (1975).‏
    • [4] J. Button. All Fuchsian Schottky groups are classical Schottky groups.‏ Geometry & Topology Monographs 1: The Epstein birthday schrift,...
    • [5] V. Chuckrow. On Schottky groups with applications to Kleinian‏ groups. Annals of Math. 88, pp. 47-61, (1968).‏
    • [6] D. Hejhal. On Schottky and Teichm¨ uller spaces. Advances in Math.‏ 15, pp. 133-156, (1975).‏
    • [7] B. Heltai. Symmetric Riemann surfaces, torsion subgroups and Schottky coverings. Proc. of the Amer. Math. Soc. 100, pp. 675-682, (1987).‏
    • [8] L. Gerritzen and F. Herrlich. The extended Schottky space. J. Reine‏ Angew. Math. 389, pp. 190-208, (1988).‏
    • [9] R. A. Hidalgo The Noded Schottky Space. Proc. London Math. Soc.‏ 3, pp. 385-403, (1996).‏
    • [10] R. A. Hidalgo. Noded Fuchsian groups I. Complex variables, 36, pp. 45-66, (1998).
    • [11] R. A. Hidalgo. Kleinian groups with an invariant Jordan curve: Jgroups. Pacific Journal of Math. 169, pp. 291-309, (1995).‏
    • [12] R. A. Hidalgo. Schottky uniformization of stable symmetric Riemann‏ surfaces. Notas de la Sociedad Matem´ atica de Chile (NS) No. 1,...
    • [13] R. A. Hidalgo. Automorphisms of Schottky type. Ann. Acad. Scie.‏ Fenn. Mathematica 30, pp. 183-204, (2005).‏
    • [14] R. A. Hidalgo. Noded function groups. Complex geometry of groups‏ (Olmu´ e, 1998), 209-222, Contemp. Math., 240, Amer. Math. Soc.,‏ Providence,...
    • [15] R. A. Hidalgo and B. Maskit. On Neoclassical Schottky groups. Trans.‏ of the Amer. Math. Soc. 358, pp. 4765 - 4792, (2006).‏
    • [16] R. A. Hidalgo and B. Maskit. On Klein-Schottky groups. Pacific J. of‏ Math. (2) 220, pp. 313-328, (2005).‏
    • [17] R. A. Hidalgo and B. Maskit. Extended Schottky groups. Preprint.‏
    • [18] P. Koebe. Uber die Uniformisierung der Algebraischen Kurven II. ¨‏ Math. Ann. 69 (1910),1-81, (1910).‏
    • [19] P. Koebe. Uber die Uniformisierung reeller algebraischer Kurven.‏ Nachr. Akad. Wiss. Goettingen, pp. 177-190, (1907).‏
    • [20] I.Kra. Automorphic forms and Kleinian groups, Benjamin, New York,‏ (1972).‏
    • [21] I. Kra. Horocyclic coordinates for Riemann surfaces and moduli spaces‏ of Kleinian groups. J. Amer. Math. Soc. 3 (1990), 499-578.‏
    • [22] A. Marden. Schottky groups and circles. Contribution to Analysis, a‏ collection of papers dedicated to Lipman Bers (L.V. Ahlfors a.o.,...
    • [23] B. Maskit. Kleinian Groups. Springer-Verlag, 1988.‏
    • [24] B. Maskit. On free Kleinian groups. Duke Math. J. 48 (1981), 755-765.‏
    • [25] B. Maskit. A characterization of Schottky groups. J. d’Analyse Math.‏ 19 (1967), 227-230.‏
    • [26] B. Maskit. On the classification of Kleinian groups:I. Koebe groups.‏ Acta Math. 135, pp. 249-270, (1975).‏
    • [27] B. Maskit. On the classification of Kleinian groups:II. Signatures. Acta‏ Math. 138, pp. 17-42, (1977).‏
    • [28] B. Maskit. On a class of Kleinian groups. Ann. Acad. Sci. Fenn. Ser.‏ A I Math. (1969).‏
    • [29] B. Maskit. Self-maps on Kleinian groups. Amer. J. Math. XCIII, pp. 840-856, (1971).
    • [30] D. Mumford. Stability of projective varieties, L’enseignement math.‏ 23, pp. 39-110, (1977).‏
    • [31] S. Nag, The Complex Analytic Theory of Teichmüller Spaces (Wiley,‏ New York, (1988)).‏
    • [32] H. Sato. On a paper of Zaroow. Duke Math. J. 57, pp. 205-209, (1988).‏
    • [33] H. Yamamoto. An example of a nonclassical Schottky group. Duke‏ Math. J. 63, pp. 193-197, (1991).‏
    • [34] R. Zarrow. Classical and nonclassical Schottky groups. Duke Math. J.‏ 42, pp. 717-724, (1975)‏

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno