We survey some old and new results related to the retrosection theorem and some of its extensions to compact Klein surfaces, stable Riemann surfaces and stable Klein surfaces.
Referencias bibliográficas
Citas [1] L. V. Ahlfors. Finitely generated Kleinian groups, Amer. J. Math. 86 (1964), 413-423; 87 (1965), 759.
[2] N. L. Alling and N. Greenleaf, N. Foundations of the theory of Klein surfaces. Lect. Notes in Math. 219, Springer-Verlag, (1971).
[3] L. Bers. Automorphic forms for Schottky groups,. Adv. in Math. 16, pp. 332-361, (1975).
[4] J. Button. All Fuchsian Schottky groups are classical Schottky groups. Geometry & Topology Monographs 1: The Epstein birthday schrift,...
[5] V. Chuckrow. On Schottky groups with applications to Kleinian groups. Annals of Math. 88, pp. 47-61, (1968).
[6] D. Hejhal. On Schottky and Teichm¨ uller spaces. Advances in Math. 15, pp. 133-156, (1975).
[7] B. Heltai. Symmetric Riemann surfaces, torsion subgroups and Schottky coverings. Proc. of the Amer. Math. Soc. 100, pp. 675-682, (1987).
[8] L. Gerritzen and F. Herrlich. The extended Schottky space. J. Reine Angew. Math. 389, pp. 190-208, (1988).
[9] R. A. Hidalgo The Noded Schottky Space. Proc. London Math. Soc. 3, pp. 385-403, (1996).
[10] R. A. Hidalgo. Noded Fuchsian groups I. Complex variables, 36, pp. 45-66, (1998).
[11] R. A. Hidalgo. Kleinian groups with an invariant Jordan curve: Jgroups. Pacific Journal of Math. 169, pp. 291-309, (1995).
[12] R. A. Hidalgo. Schottky uniformization of stable symmetric Riemann surfaces. Notas de la Sociedad Matem´ atica de Chile (NS) No. 1,...
[13] R. A. Hidalgo. Automorphisms of Schottky type. Ann. Acad. Scie. Fenn. Mathematica 30, pp. 183-204, (2005).
[14] R. A. Hidalgo. Noded function groups. Complex geometry of groups (Olmu´ e, 1998), 209-222, Contemp. Math., 240, Amer. Math. Soc., Providence,...