Ir al contenido

Documat


On characterization of riemannian manifolds

  • Tribuzy, Iván [1] ; Ayala, Víctor [2] ; Diniz, Marco [3] ; Veloso, José M. M. [3]
    1. [1] Universidade Federal do Amazonas

      Universidade Federal do Amazonas

      Brasil

    2. [2] Universidad Católica del Norte

      Universidad Católica del Norte

      Antofagasta, Chile

    3. [3] Universidad Federal de Pará

      Universidad Federal de Pará

      Brasil

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 27, Nº. 2, 2008, págs. 113-144
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172008000200001
  • Enlaces
  • Resumen
    • This survey, present some results about characterization of Riemannian manifolds by using notions of convexity. The first part deals with immersed manifolds and the second part gives a characterization for the Euclidean space and for the Euclidean sphere.

  • Referencias bibliográficas
    • Citas [1] Alexander, S. - Locally convex hypersurfaces of negatively curved spaces. Proc Am. Math. Soc. 64, PP. 321-325, (1977).
    • [2] Bishop, R. L. - Infinitesimal convexity implies local convexity. Indiana Math. J. 29, pp. 169-172, (1974).
    • [3] do Carmo, M. P. - Geometria Riemanniana. Rio de Janeiro, (1979).
    • [4] do Carmo, M. P. and Lima, E. L. - Isometric immersions with semidefinite second quadratic forms. Archiv der Math. 20, pp. 173-175, (1969).
    • [5] do Carmo M. P. and Warner, F. - Rigidity and convexity of hypersurfaces in spheres. j. Diff. Geom. 4, pp. 133-144, (1970).
    • [6] Cartan, E. - Lenons sur le geometrie des espaces de Riemann. Paris, (1946).
    • [7] Cheeger. J. and Ebin, D.G. - Comparison Theorems in Riemannian Geometry. North-Holand Publishing Co., Amsterdam, (1975).
    • [8] Eschenburg, J. H - Horospheres and the stable part of geodesic flow. Math.Z., (1977).
    • [9] Green, L.W. - Auf Wiedersehensflchen. Annals of Mathematics, 78 (2), (1963).
    • [10] Hadamard, J. - Sur certaines proprits des trajectories en dynamique. J. Math. Pures Appl. 3 (1897), 331-387.
    • [11] Im Hof, H. C. and Ruh, E. A. - An equivariant pinching theorem. Comm. Math. Helv., pp. 389-401, 50 (1975).
    • [12] Karcher, H. - Schnittort und konvexe Mengen in vollstndigen Riemannschen Mannigfaltigkeiten. Math. Annalen, 117, pp. 105-121, (1968).
    • [13] Lima, E. L. - Commuting Vector Fields on S3. Ann. of Math. 81, pp. 70-81, (1965).
    • [14] Maeda, M. - On the injective radius of noncompact Riemannian Manifold. Proc. Japan Acad. 50, pp. 148-151, (1974).
    • [15] Nash, J. - The embedding problem for Riemannian manifolds. Ann. of Math. 63, pp. 20-63, (1956).
    • [16] Rodrigues L. - Geometria das subvariedades. Monografias do IMPA, (1976).
    • [17] Sacksteder, R. - On hypersurfaces with no negative sectional curvatures. Amer. J. Math. 82, pp. 609-630, (1960).
    • [18] Spivak M. - A conprehensive introduction to differential geometry, volume IV. Pulblish or Perish - Inc Boston Mass.
    • [19] Stokes, J. J. - ber die Gestalt der positiv gekrmmten offenen Flche. Compositio Mathematica 3, 55-88, (1936).
    • [20] Tribuzy, I. A. - A characterization of Rn. Archiv der Mathematik, maio (1978).
    • [21] Tribuzy, I. A. - Convexidade em Variedades Riemannianas, Tese IMPA, (1978).
    • [22] Tribuzy, I. A. - Convex immersions into positively-curved manifolds. Bol. Soc. Bras. Mat. Vol. 17 n0 1, pp. 21-39, (1986).
    • [23] Tribuzy, I. A. - Isosceles triangles in Riemannian geometry - a characterization of the n-sphere. Bol. Soc. Bras. Mat. New Series 38(4),...
    • [24] Whitehead - Convex regions in geometry of paths. Quart. J. Math. Oxford, 3 (1932).
    • [25] Yang, C. T. - Odd-dimensional wiedersehen manifolds are spheres. J. Diff. Geometry, 15, pp. 91-96, (1980).
    • [26] Kazdan, A. - An isoperimetric inequality and wiedersehen manifolds - seminar on differential geometry. Annals of Math. Studies, 102,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno