Ir al contenido

Documat


A nonresonance between non-consecutive eigenvalues of semilinear elliptic equations: Variational methods

  • Moussaoui, M. [1]
    1. [1] University Mohamed I.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 20, Nº. 1, 2001, págs. 53-63
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172001000100004
  • Enlaces
  • Resumen
    • We study the solvability of the problem −∆u = f(x, u) + h in Ω ; u = 0 on ∂Ωwhen the nonlinearity f is assumed to lie asymptotically between two non- consecutive eigenvalues of −∆. We show that this problem is nonresonant.

  • Referencias bibliográficas
    • Citas [1] R. A. Adams, Sobolev spaces, Academic Press, New York, (1975).
    • [2] L. Boccardo, P. Drabek , D. Giachetti, M. Kucera, Generalisation of Fredholm alternative for nonlinear differential operator, Nonli. An....
    • [3] H. Berestycki, D. G. de Figueiredo, Double resonance in semilinear elliptic problems. Comm. Partial Differential Equations 6, pp. 91 −...
    • [4] D. G. Costa, A. S. Oliveira, Existence of solutions for a class of semilinear elliptic problems at double resonance. Bol. Soc. BRAS. Mat.,...
    • [5] D. G. Costa, E. A. Deb and E. Silva, Existence of solutions for a class of resonant elliptic problems. J. Math. Anal. Appl. 175, pp. 411-424,...
    • [6] D. G. Costa, C. A. Magalhces, Variational elliptic problems which are nonquadratic at infinity. Nonlinear Analysis, vol 23. No 11, pp....
    • [7] D. G. de Figueiredo, J. P. Gossez, Conditions de non- résonance pour certains probèmes elliptiques semi-linéaire, C. R. Acad. Sci. Paris...
    • [8] D. G. de Figueiredo, J. P. Gossez, Nonresonance below the first eigenvalue for a semilinear elliptic problems, Math. An. 281, pp. 589-610,...
    • [9] D. G. de Figueiredo, J. P. Gossez, Strict monotonicity of eigenvalues and unique contination, Comm. Part. Diff. Eq. , 17 , pp. 339-346,...
    • [10] J. Mawhin, J. R. Ward, Nonresonance and existence for nonlinear elliptic boundary value problems, Nonlinear Analysis TMA, pp. 677-694,...
    • [11] J. Mawhin, J. R. Ward, M. Willem, Variational methods of semilinear elliptic equations. Arch. Rat. Mech. An 95, pp. 269-277, (1986).
    • [12] P. H. Rabinowitz, Some minimax theorems and applications to nonlinear partial diffirential equations, Nonlinear Analysis, Cesari, Kannan...
    • [13] P. H. Rabinowitz, Some minimax methods in critical point theory with applications to differential equations, CBMS, Regional conf. Ser....
    • [14] M. Schechter, Nonlinear elliptic boundary value problems at strong resonance, Amer. J. Math., 112, pp. 439-460, (1990).
    • [15] E. A. B. Silva, Linking theorems and applications to semilinear elliptic problems at resonance, Nonlinear Analysis TMA, 16, pp. 455-477,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno