Ir al contenido

Documat


Conjugacies classes of some numerical methods

    1. [1] Universidad de Santiago de Chile

      Universidad de Santiago de Chile

      Santiago, Chile

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 20, Nº. 1, 2001, págs. 1-17
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172001000100001
  • Enlaces
  • Resumen
    • We study the dynamics of some numerical root finding methods such as the Newton, Halley, K¨onig and Schröder methods for three and four degree complex polynomials.

  • Referencias bibliográficas
    • Citas [1] Alexander, D. S. A history of complex dynamics: from Schröder to Fatou and Julia. Vieweg, Aspects of Mathematics (1994).
    • [2] Argiropoulos, N., Drakopoulos, V., Böhm, A., Julia and Mandelbrot–like sets for higher order König rational iteration functions. Fractal...
    • [3] Argiropoulos, N., Drakopoulos, V., Böhm, A., Generalized computation of Schröder iteration functions to motivate families of Julia and...
    • [4] Arney, D. C., Robinson, B. T. Exhibiting chaos and fractals with a microcomputer. Comput. Math. Applic. Vol. 19 (3), pp. 1–11, (1990).
    • [5] Ben–Israel, A. Newton’s method with modified functions. Contemporary Mathematics 204, pp. 39–50, (1997).
    • [6] Ben—Israel A., Yau, L. The Newton and Halley method for complex roots. The American Mathematical Monthly 105, pp. 806– 818, (1998).
    • [7] Blanchard, P. Complex Analytic Dynamics on the Riemann sphere. Bull. of AMS (new series) Vol. 11, number 1, July, pp. 85-141, (1984).
    • [8] Blanchard, P., Chiu, A. Complex Dynamics: an informal discussion. Fractal Geometry and Analysis. Eds. J. Bélair & S. Dubuc. Kluwer...
    • [9] Cayley, A. The Newton–Fourier Imaginary Problem. Amer. J. Math. 2, 97, (1879).
    • [10] Cayley, A. On the Newton–Fourier Imaginary Problem. Proc. Cambridge Phil. Soc. 3, pp. 231–232, (1880).
    • [11] Curry, J. H., Garnett, L., Sullivan, D. On the iteration of a rational function: computer experiment with Newton method. Comm. Math....
    • [12] Drakopoulos, V. On the additional fixed points of Schröder iteration function associated with a one–parameter family of cubic polynomilas....
    • [13] Douady A., Hubbard, J. H. On the dynamics of polynomial–like mappings. Ann. Sci. Ec. Norm. Sup. (Paris) 18 (1985), 287–343.
    • [14] Gilbert, W. Newton’s method for multiple roots. Comput. and Graphics, Vol. 18 (2), pp. 227–229, (1994).
    • [15] Gilbert, W. The complex dynamics of Newton’s method for a double root. Computers Math. Applic., Vol. 22 (10), pp. 115–119, (1991).
    • [16] Emerenko, A., Lyubich, M., Y. The Dynamics of Analytic Transformations. Leningrad Math. J., Vol. 1 (3), pp. 563-634, (1990).
    • [17] Henrici, P. Applied and Computational Compex Analysis. Wiley, (1974).
    • [18] Milnor, J. Dynamics in One Complex Dimension: Introductory Lectures. Preprint #1990/5, SUNY StonyBrook, Institute for Mathematical Sciences.
    • [19] Peitgen, Heinz - Otto, (Ed.) Newton‘s Method and Dynamical Systems. Kluwer Academic Publishers, (1989).
    • [20] Schröder, E. O. On infinitely many algorithms for solving equations. Math. Ann. 2 (1870), pp. 317—265. Translated by G. W. Stewart, 1992...
    • [21] Vrscay, E. R. Julia sets and Mandelbrot–like sets associated with higher order Schröder rational iteration functions: a computer assisted...
    • [22] Vrscay, E. R., Gilbert W. J. Extraneous fixed points, basin boundary and chaotic dynamics for Schröder and König rational iteration functions....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno