Ir al contenido

Documat


Separation problem for sturm-liouville equation with operator coefficient

  • Oer, Z. [1]
    1. [1] Yıldız Technical University

      Yıldız Technical University

      Turquía

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 20, Nº. 2, 2001, págs. 177-191
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172001000200003
  • Enlaces
  • Resumen
    • Let H be a separable Hilbert Space. Denote by H1 = L2(a,b; H) the set of function defned on the interval a < c < b (¾¥ a < c < b £ ¥)whose values belong to H strongly measurable [12] and satisfying the conditionZ b a ||f(x)||2 Hdx < ∞ If the inner product of function ¦(c) and g(c) belonging to H1 is defined by (f, g)1 = Z b a (f(x), g(x))Hdx then H1 forms a separable Hilbert space. We study separation problem for the operator formed by ¾ y"+ Q (c) y Sturm-Liouville differential expression in L2(¾ ¥, ¥; H) space has been proved where Q (c) in an operator which transforms at H in value of c,,self-adjoint, lower bounded and its inverse is complete continous.

  • Referencias bibliográficas
    • Citas [1] Bayramoglu, M., Abudov, A. A., About Sturm-Liouville Operator With Operator Coefficient is Essential Self-Adjoint, Sbornik, Spectral...
    • [2] Boymatov, K. Ch., Separable Theorems For Sturm-Liouville Operator, Matem. Zametki, Vol.14, No:3, pp. 349-359, (1973).
    • [3] Everitt, W. N., Giertz, M. A., Dirichlet Type Result For Ordinary Differential Operators, Math. Ann., Vol. 203, No 2, pp. 119-128, (1973).
    • [4] Everitt, W.N., Giertz, M.A., An Example Conserning The Separation Property For Differential Operators, Proc.Roy.Soc. Edinburg A, Vol.71,...
    • [5] Everitt, W.N., Giertz, M.A., Inequalities And Separation For Schrdinger Type Operators in L2(Rn), Proc.Roy.Soc. Edinburg A, Vol.79, pp....
    • [6] Fulton, T. C., Pruess, S. A., Eigenvalue And Eigenfunction Asymtotics For Regular Sturm-Liouville Problems, J. Math. Anal. Appl., 188,...
    • [7] Ismagilov, R. S., Self-adjointless of the Sturm-Liouville Operator UMN, 18, No 5, pp. 161-166, (1963).
    • [8] Levitan, B. M. and Sargsyan, I. S., Strum-Liouville And Dirac Operators, Kluzer, Dordrechz, (1991).
    • [9] Minbayev, K. T., Otelbayev, M. O., The Weighted of Functional Spaces and Spectrum of the Differential Operators, Moskova ”Nauka”, (1988)...
    • [10] Otelbayev, M. O., Behaviour of Spectrum of the Sturm-Liouville operator, Alma Ata. Bilim (1990).
    • [11] Titchmarsh, E. C., Eigenfunctions Expansions Associated With Second Order Differential Equations, 2nd ed., Vol.I, Oxford Univ.Press,...
    • [12] Yosida, K., Functional Analysis, Berlin-Gttingen-Heidelberg: Springer-Verlag, (1980).
    • [13] Izmaylov, A. L., Otelbayev, M. O.,Weighted Integrability of Solutions of Differential Equation Given in Bounded Area, Izv. An Kaz. SSR.,...
    • [14] Otelbayev, M. O., Weighted Integrability of Solutions Of SturmLiouville Equation, Matem. Zametki, Vol. 16, No 6, pp. 969-980, (1974).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno