Ir al contenido

Documat


Numerical uniformization of hyperelliptic-m-symmetric riemann surfaces

  • Autores: Rubén Antonio Hidalgo Árbol académico
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 20, Nº. 3, 2001, págs. 351-365
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172001000300007
  • Enlaces
  • Resumen
    • In this note we consider hyperelliptic-M-symmetric Riemann surfaces, that is, hyperelliptic Riemann surfaces with a symmetry with maximal number of components of fixed points. These surfaces can be represented either by real algebraic curves or by real Schottky groups. To obtain one of these in terms of the other is difficult. In this note we proceed to describe explicit transcendental relations between the different sets of parameters these representations give. This can be used to obtain a computer program which permits obtain numerical approximations of the algebraic curve in terms of real Schottky group and viceversa.

  • Referencias bibliográficas
    • Citas [1] Burnside, W. On a class of Automorphic Functions. Proc. London Math. Soc. Vol 23, pp. 49-88, (1892)
    • [2] Buser, P. and Silhol, R. Geodesics, periods and Equations of Real Hyperelliptic Curves. Preprint.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno