Ir al contenido

Documat


On the representation type of certain trivial extensions

  • Novoa Bustos, Cristián ; Peña, José Antonio de la [1]
    1. [1] Universidad Nacional Autónoma de México

      Universidad Nacional Autónoma de México

      México

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 20, Nº. 3, 2001, págs. 323-337
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172001000300005
  • Enlaces
  • Resumen
    • Let A ∼= kQ/I be a basic and connected finite dimension algebra over closed field k. In this note show that in case B = A[M] is a tame one-point extension of a tame concealed algebra A by an indecomposable module M, then the trivial extension T(B) = B ∝ DB is tame if and only if the module M is regular.

  • Referencias bibliográficas
    • Citas [A1] I. Assem. Tilted Algebras of type An. Communications in Algebra, (19); 2121–2139, (1982).
    • [AS2] I. Assem and A. Skowronski. On tame repetitive algebra. Fundamenta Mathematicae. 142; 59–84, (1993).
    • [ARS] M. Auslander, I. Reiten and S. Smalø. Representation theory of Artin algebras. Cambridge Studies in Advanced Mathematics 36, (1995).
    • [BL] M. Barot and H. Lenzing. One-point extensions and derived equivalence. to appear.
    • [BP] M. Barot and J. A. de la Peña. Derived tubular strongly simply connected algebras. In Proceeding Am. Math. Soc. 127 N 3, 647–655, (1999).
    • [C-B] W.W. Crawley-Boevey. Funtorial filtration II: Clans and the Gelfand problem. J. London Math. Soc. 40, 9–30, (1989).
    • [G] P. Gabriel. Unzerlegbare darstellungen I. Manuscripta Math. 6; 71–103. (1972).
    • [GEP] C. Geiss and J. A. de la Peña. Auslander-Reiten Components for Clans. To appear.
    • [DS] P. Dowbor and A. Skowronski. Galois corering of tame algebras. Arch. Math. 44; 522–529, (1985).
    • [H] D. Happel. On the derived category of a finite-dimensional algebras. Comment. Math. Helv. 62; 339–389, (1987).
    • [HW] D. Hughes and J. Waschbusch. Trivial extension of tilted algebras. Proc. London Math. Soc. 46; 347–364, (1983).
    • [Kr] H. Krause. Stable module categories and their representation type. Preprint Bielefeld. (1996).
    • [LDS] H. Lenzing, P. Dowbor and A. Skowronski. Galois covering of algebras by locally suppot-finite categories. Proceeding Letures Notes in...
    • [NS] R. Norenberg and A. Skowronski. Tame minimal nonpolinomial growth strongly connected algebras. Proc. ICRA VII. CMS-AMS conference Proceeding...
    • [N] C. Novoa-Bustos. Tipo de representacao e quiver ordinário do bimodulo DA. Tese de doutorado IME USP. (1999).
    • [P1] J.A. de la Peña. Algebras whose derived category is tame. Proceediings AMS-conference, Seattle (1997).
    • [P] J.A. de la Peña. On the representation type of one point extension of tame concealed algebras. Manuscripta Math., 61; 183– 194, (1988).
    • [R] C. M. Ringel. Tame algebras and quadratic form. Lectures Notes in Math. 1099, Springer,(1984).
    • [R2] C. M. Ringel. Tame algebras, on algorithms for solving vector space problems II. Proceedings Lecture Notes in Math. 831, Springer (1980).
    • [W] T. Wakamatsu. Stable equivalence between universal covers of trivial extension self-injective algebras. Tsukuba J. Math., 9; 299–316,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno