Ir al contenido

Documat


Stationary solutions of magneto-micropolar fluid equations in exterior domains

  • Durán, Mario [1] ; Ortega Torres, Eliana [2] ; Rojas Medar, Marko Antonio [3] Árbol académico
    1. [1] Pontificia Universidad Católica de Chile

      Pontificia Universidad Católica de Chile

      Santiago, Chile

    2. [2] Universidad de Antofagasta

      Universidad de Antofagasta

      Antofagasta, Chile

    3. [3] Universidade Estadual de Campinas

      Universidade Estadual de Campinas

      Brasil

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 22, Nº. 1, 2003, págs. 63-79
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172003000100004
  • Enlaces
  • Resumen
    • We establish the existence and uniqueness of the solution for the magneto-micropolar fluid equations in the case of exterior domains in IR3 . First, we prove the existence of at least one weak solution of the stationary system. Then we discuss its uniqueness.

  • Referencias bibliográficas
    • Citas [1] M. Abid, Problèmes extérieurs de type Stokes dans R3 , CRAS, 317, pp. 267-270, (1993).
    • [2] G. Ahmadi and M. Shahinpoor, Universal stability of magneto - micropolar fluid motions, Int. J. Enging Sci. 12, pp. 657-663, (1974).
    • [3] E. V. Chizhonkov, On a system of equations of magnetohydrodynamic type, Soviet Math. Dokl. 30, pp. 542-545, (1984).
    • [4] H. Fujita, On the existence and regularity of the steady-state solutions of the Navier-Stokes equations, J. Fac. Sci. Univ. Tokyo Sect....
    • [5] V. Girault and A.Sequeira, A well-posed problem for the exterior Stokes equations in two and three dimensions, Arch. Rational Mech. Anal....
    • [6] J. G. Heywood, On uniqueness questions in the theory of viscous flow, Acta Math. 136, pp. 61-102, (1976).
    • [7] J. G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29, pp. 639-681...
    • [8] O. A. Ladyszhenskaya, The mathematical theory of viscous incompressible flow, Second edition. Gordon and Breach, New York, (1969).
    • [9] G. Lukaszewicz, On stationary flows of asymmetric fluids, Volume XII, Rend. Accad. Naz. Sci. detta dei XL, 106, pp. 35-44, (1988).
    • [10] P. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Int. J. Enging. Sci.,...
    • [11] M. Padula and R. Russo, A uniqueness theorem for micropolar fluid motions in unbounded regions, Bolletino U.M.I. (5) 13-A, pp. 660- 666,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno