Ir al contenido

Documat


Green’s function of differential equation with fourth order and normal operator coefficient in half axis

  • Bayramoglu, M. [1] ; Ozden Koklu, Kevser [1]
    1. [1] Yıldız Technical University

      Yıldız Technical University

      Turquía

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 22, Nº. 1, 2003, págs. 15-30
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172003000100002
  • Enlaces
  • Resumen
    • Let H be an abstract seperable Hilbert space. Denoted by H1 = L2 (0, ∞; H), the all functions defined in [0, ∞) and their values belongs to space H, which R ∞ 0 kf(x)k 2 H dx < ∞. We define inner product in H1 by the formula(f, g)H1 = R ∞ 0 (f, g)Hdx f(x), g(x) ∈ H1,H1 forms a seperable Hilbert space[3] where k.kH and (., .)H are norm and scalar product, respectively in H.  In this study, in space H1, it is investigated that Green’s function (resolvent) of operator formed by the diferential expressiony IV + Q(x)y, 0 ≤ x < ∞,and boundary conditionsy 0 (0) − h1y(0) = 0,y 000(0) − h2y 00(0) = 0,where Q(x) is a normal operator mapping in H and invers of it is a compact operator for every x ∈ [0, ∞). Assume that domain of Q(x) is independent from x and resolvent set of Q(x) belongs to |arg λ − π| < ε (0 < ε < π) of complex plane λ, h1 and h2 are complex numbers. In addition assume that the operator function Q(x) satisfies the Titchmarsh-Levitan conditions.

  • Referencias bibliográficas
    • Citas [1] ALBAYRAK, I. and BAYRAMOGLU, M., Investigation Green Function of of Differential Equation with fourth order and operator coef-...
    • [2] ASLANOV, G.I., On Differential Equation with infinity operator coefficient in Hilbert Space, DAN ROSSII, 1994,V.337, No:1, (1994)
    • [3] ”Applied Functional Analysis ”, BALAKRISHNAN, A.V., Springer Verlag, New York, Heidelberg, Berlin, (1976)
    • [4] BAYRAMOGLU, M., Asymptotic Behaviour of the Eigenvalues of Ordinary Differential Equation with Operator Coefficient, ”Functional Analysis...
    • [5] BAYRAMOGLU, M. and BAYKAL, O., Asymptotic Behaviour of the Weighted Trace of Schrodinger Equation with Operator Coefficient given in n-dimensional...
    • [6] BOYMATOV, K.CH., Asymptotic Behaviour of the spectrum of the Operator Differential Equation, Usp. Mat. Nauk, V.5, 28, 207-208, (1973)
    • [7] ”Perturbation Theory For Linear Operators ”, KATO, T., Berlin Heidelberg-New York, Springer-Verlag, (1980)
    • [8] KLEIMAN, E.G., On The Green’s Function For The Sturm-Liouville Equation With a Normal Operat¨or Coefficient, Vestnik, Mosk. Univ., No:5,...
    • [9] KOSTYUCHENKO, A.G. and LEVITAN, B.M., Asymtotic Behaviour of The Eigenvalue of The Sturm-Liouville Operatör Problem, Funct. Analysis Appl.1,...
    • [10] ”Asymptotic Behaviour of the Eigenvalues ”, KOSTYUCHENKO, A.G. and SARGSYAN, I.S., Moskow, Nauka., (1979)
    • [11] LEVITAN, B.M., Investigation of The Green’s Function of The SturmLiouville Problem with Operator Coefficient, Mat. Sb. 76(118), No:2,...
    • [12] ”Asymptotic Behaviour of The Spectrum of The Sturm-Liouville Operator ”, OTELBAYEV, M., Alma Ata: Science., (1990)
    • [13] OTELBAYEV, M., Classification of The Solutions of Differential Equations, IZV.AN KAZ.SSR, No:5, 45-48, (1977)
    • [14] ”Methods of Modern Mathematical Physics IV: Analysis of operators ”, REED, M. and SIMON, B., Academic Press, New York, San Francisco,...
    • [15] SAITO, Y., Spektral Theory For Second-Order Differential Operators With Long-Range Operat¨or-Valued Coefficients, I. Japan. J.Math, 1....
    • [16] ”Boundary Value Problems and Green Function ”, STAKGOLD, I., New York, (1998)
    • [17] ”Functional Analysis”, YOSIDA, K., (1980), Berlin-Gottingen- Heidelberg: Springer Verlag.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno