Ir al contenido

Documat


Non - autonomous inhomogeneous boundary cauchy problems and retarded equations

  • Filali, M. [1] ; Moussi, M. [1]
    1. [1] University Mohamed.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 22, Nº. 2, 2003, págs. 145-159
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172003000200005
  • Enlaces
  • Resumen
    • In this paper we prove the existence and the uniqueness of the classical solution of non-autonomous inhomogeneous boundary Cauchy problems, and that this solution is given by a variation of constants formula. This result is applied to show the existence of solutions of a retarded equation.

  • Referencias bibliográficas
    • Citas [1] K. J. Engel and R. Nagel: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, SpringerVerlag...
    • [2] G. Greiner: Perturbing the boundary conditions of a generator, Houston J. Math. 13, pp. 213-229, (1987).
    • [3] G. Greiner: Semilinear boundary conditions for evolution equations of hyperbolic type, Lecture Notes in Pure and Appl. Math. 116 Dekker,...
    • [4] R. Grimmer and E. Sinestrari: Maximum norm in one-dimensional hyperbolic problems, Diff. Integ. Equat. 5, pp. 421-432, (1992).
    • [5] T. Kato: Linear evolution equations of ”hyperbolic” type, J. Fac. Sci. Tokyo, 17, pp. 241-258, (1970).
    • [6] H. Kellermann: Linear evolution equations with time dependent domain, Semesterbericht Funktionalanalysis T¨ubingen, Wintersemester, pp....
    • [7] N. T. Lan: On nonautonomous Functional Differential Equations, J. Math. Anal. Appl. 239, pp. 158-174, (1999).
    • [8] N. T. Lan and G. Nickel: Time-Dependent operator matrices and inhomogeneous Cauchy Problems, Rend. Circ. Mat. Palermo XLVII, pp. 5-24,...
    • [9] R. Nagel and E. Sinestrari: Inhomogeneous Volterra integrodifferential equations for Hille-Yosida operators, Marcel Dekker, Lecture Notes...
    • [10] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations, New York Springer (1983).
    • [11] N. Tanaka: Quasilinear evolution equations with non-densely defined operators, Diff. Int. Eq. 9, pp. 1067-1106, (1996).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno