Ir al contenido

Documat


Orlicz - Pettis theorems for multiplier convergent operator valued series

  • Swartz, Charles [1]
    1. [1] New Mexico State University

      New Mexico State University

      Estados Unidos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 22, Nº. 2, 2003, págs. 135-144
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172003000200004
  • Enlaces
  • Resumen
    • Let X, Y be locally convex spaces and L(X, Y ) the space of continuous linear operators from X into Y. We consider 2 types of multiplier convergent theorems for a series PTk in L(X, Y ). First, if λ is a scalar sequence space, we say that the series PTk is λ multiplier P convergent for a locally convex topology τ on L(X, Y ) if the series tkTk is τ convergent for every t = {tk} ∈ λ. We establish conditions on λ which guarantee that a λ multiplier convergent series in the weak or strong operator topology is λ multiplier convergent in the topology of uniform convergence on the bounded subsets of X. Second, we consider vector valued multipliers. If E is a sequence space of X valued sequences, the series PTk is E multiplier convergent in a locally convex topology η on Y if the series PTkxk is η convergent for every x = {xk} ∈ E. We consider a gliding hump property on E which guarantees that a series PTk which is E multiplier convergent for the weak topology of Y is E multiplier convergent for the strong topology of Y.

  • Referencias bibliográficas
    • Citas [B] G. Bennett, Some inclusion theorems for sequence spaces, Pacific J. Math., 46, pp. 17-30, (1973).
    • [BL] J. Boos and T. Leiger, Some distinguished subspaces of domains of operator valued matrices, Results Math.,16(1989),199-211.
    • [D] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, N. Y., (1984).
    • [DF] J. Diestel and B. Faires, Vector Measures, Trans. Amer. Math. Soc., 198, pp. 253-271, (1974). [DS] N. Dunford and J. Schwartz, Linear...
    • [FP] M. Florencio and P. Paul, A note on λmultiplier convergent series, Casopis Pro Pest. Mat., pp. 113, pp. 421-428, (1988).
    • [G] D. J. H. Garling, The β- and γ-duality of sequence spaces, Proc. Cambridge Phil. Soc., 63, pp. 963-981, (1967).
    • [KG] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, N. Y., (1981).
    • [LCC] Li Ronglu, Cui Changri and Min Hyung Cho, An invariant with respect to all admissible (X,X’)-polar topologies, Chinese Ann. Math.,3,...
    • [SS] C. Stuart and C. Swartz,Orlicz-Pettis Theorems for Multiplier Convergent Series, Journal for Analysis and Appl.,17, pp. 805-811, (1998).
    • [Sw1] C. Swartz, An Introduction to Functional Analysis,Marcel Dekker, N. Y., (1992).
    • [Sw2] C. Swartz, Infinite Matrices and the Gliding Hump, World Sci.Publ., Singapore, (1996).
    • [Sw3] C. Swartz, A multiplier gliding hump property for sequence spaces, Proyecciones Revista de Matemática, 20, pp. 19-31, (2001).
    • [W] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, N. Y., (1978).
    • [WL] Wu Junde and Li Ronglu, Basic properties of locally convex Aspaces, Studia Sci. Math. Hungar., to appear.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno