Ir al contenido

Documat


Diagonals and eigenvalues of sums of hermitian matrices. Extreme cases

  • Miranda, Héctor [1]
    1. [1] Universidad de Bío – Bío.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 22, Nº. 2, 2003, págs. 127-134
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172003000200003
  • Enlaces
  • Resumen
    • There are well known inequalities for Hermitian matrices A and B that relate the diagonal entries of A+B to the eigenvalues of A and B. These inequalities are easily extended to more general inequalities in the case where the matrices A and B are perturbed through congruences of the form UAU∗ + V BV ∗ , where U and V are arbitrary unitary matrices, or to sums of more than two matrices. The extremal cases where these inequalities and some generalizations become equalities are examined here.

  • Referencias bibliográficas
    • Citas [1] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Nat. Acad. Sci. U.S.A. 35: pp. 52-655,...
    • [2] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge U. P., New York, (1985).
    • [3] C. K. Li, Matrices with some extremal properties, Linear Algebra Appl. 101: pp. 255-267, (1988).
    • [4] C. K. Li and Y. T. Poon, Diagonal and partial diagonals of sums of matrices, Canad. J. Math. 54: pp. 571-594, (2002).
    • [5] H. Miranda, Optimality of the trace of a product of matrices, Proyecciones Revista de Matemática 18, 1: pp. 71-76, (1999).
    • [6] H. Miranda, Singular values, diagonal elements, and extreme matrices, Linear Algebra Appl. 305: pp. 151-159, (2000).
    • [7] H. Miranda and R. C. Thompson, A supplement to the von Neumann trace inequality for singular values, Linear Algebra Appl. 248: pp. 61-...
    • [8] I. Schur, Uber eine klasse von mittelbildungen mit anwendungen auf die determinantentheorie, Sitzungsber. Berliner Math. Ges. 22: pp....
    • [9] R. C. Thompson, Singular values, diagonal elements, and convexity, SIAM J. Appl. Math. 32: pp. 39-63, (1977).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno