Ir al contenido

Documat


A commutator rigidity for function groups and Torelli’s theorem

  • Autores: Rubén Antonio Hidalgo Árbol académico
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 22, Nº. 2, 2003, págs. 117-125
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172003000200002
  • Enlaces
  • Resumen
    • We show that a non-elementary finitely generated torsion-free function group is uniquely determined by its commutator subgroup. In this way, we obtain a generalization of the results obtained in [2], [3] and [8]. This is well related to Torelli’s theorem for closed Riemann surfaces. For a general non-elementary torsion-free Kleinian group the above rigidity property still unknown.

  • Referencias bibliográficas
    • Citas [1] H. Farkas and I. Kra. Riemann surfaces. Graduate Texts in Mathematics, Springer-Verlag.
    • [2] R. Hidalgo. Homology coverings of Riemann surfaces, Tôhoku Math. J. 45 (1993), 499-503.
    • [3] R. Hidalgo, Kleinian groups with common commutator subgroup, Complex variables 28, pp. 121-133, (1995).
    • [4] R. Hidalgo. Noded Fuchsian groups, Complex Variables 36, pp. 45-66, (1998).
    • [5] R. Hidalgo. Noded function groups. Contemporary Mathematics. 240, pp. 209-222, (1999).
    • [6] R. Hidalgo. Homology covering of closed Klein surfaces. Revista Proyecciones 18, pp. 165-173, (1999).
    • [7] R. Hidalgo. A note on the homology covering of analytically finite Klein surfaces. Complex variables 42, pp. 183-192, (2000).
    • [8] B. Maskit. The homology covering of a Riemann surface, Tôhoku Math. J. 38, pp. 561-562, (1986).
    • [9] B. Markit. Kleinian Groups Grundlehren der Mathematischen Wissenschaften, Vol. 287, Springer-Verlag, (1988).
    • [10] B. Maskit. On boundaries of Teichmüller spaces and on kleinian groups II, Ann. of Math. 91, pp. 607-639, (1970).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno