Ir al contenido

Documat


On sums of binomial coefficients

  • Sofo, Anthony [1]
    1. [1] Victoria University

      Victoria University

      Australia

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 28, Nº. 1, 2009, págs. 35-45
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172009000100004
  • Enlaces
  • Resumen
    • We investigate the integral representation of infinite sums involving the ratio of binomial coefficients. We also recover some wellknown properties of ζ (3) and extend the range of results given by other authors. 

  • Referencias bibliográficas
    • Citas [1] R. Apéry. Irrationalitè ζ (2) and ζ (3), Journees Arithmètiques de Luminy, Astérisque, 61, pp. 11-13, (1979).
    • [2] F. Beukers. A note on the irrationality of ζ (2) and ζ (3). Bull. London Math. Soc., 11 , pp. 268-272, (1979).
    • [3] G.Rhin and C.Viola. The group structure for ζ (3), Acta Arith. 97. 3, pp. 269-293, (2001).
    • [4] A. Sofo. Integral forms of sums associated with harmonic numbers, Appl. Maths. Comput., 207, pp. 356-372, (2009).
    • [5] A. Sofo. General properties involving reciprocals of binomial coefficients. Journal of Integer Sequences, 9, article 06.4.5, (2006).
    • [6] A. Sofo. Computational Techniques for the Summation of Series. Kluwer Academic/Plenum Publishers, (2003).
    • [7] A. Sofo. Sums of derivatives of binomial coefficients. Adv Applied Maths, 42 (2009), pp. 123-134, (2009).
    • [8] A. Sofo. Convexity properties of Reciprocals of binomial coefficients. Numerical Analysis and Applied Mathematics, (2007) Editor T. E....
    • [9] http://mathworld.wolfram.com/RiemannZetaFunction.html

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno