Ir al contenido

Documat


On ĝ-homeomorphisms in topological spaces

  • Caldas Cueva, Miguel [1] ; Jafari, Saeid [2] ; Rajesh, N. [3] ; Thivagar, M. L. [4]
    1. [1] Universidade Federal Fluminense

      Universidade Federal Fluminense

      Brasil

    2. [2] College of Vestsjaelland South.
    3. [3] Ponnaiyah Ramajayam College.
    4. [4] Arul Anandhar College.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 28, Nº. 1, 2009, págs. 1-19
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172009000100001
  • Enlaces
  • Resumen
    • In this paper, we first introduce a new class of closed map called ĝ-closed map. Moreover, we introduce a new class of homeomorphism called ĝ-homeomorphism, which are weaker than homeomorphism. We prove that gc-homeomorphism and ĝ-homeomorphism are independent. We also introduce ĝ*-homeomorphisms and prove that the set of all ĝ*-homeomorphisms forms a group under the operation of composition of maps. 

  • Referencias bibliográficas
    • Citas [1] Crossley S.G and Hildebrand S. K, Semi-closure, Texas J. Sci. 22, pp. 99-112, (1971).
    • [2] Devi R, Balachandran K and Maki H, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian J....
    • [3] Devi R, Maki H and Balachandran K, Semi-generalized closed maps and generalized semi-closed maps, Mem. Fac. Kochi Univ. Ser. A. Math.,...
    • [4] Jafari S, Noiri T, Rajesh N and Thivagar M. L, Another generalization of closed sets. (Submitted). [5] Jänich K, Topologie, Springer-Verlag,...
    • [6] Levine N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, pp. 36-41, (1963).
    • [7] Levine N, Generalized closed sets in topology, Rend. Circ. Math. Palermo, (2) 19, pp. 89-96; (1970).
    • [8] Maki H, Devi R and Balachandran K, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed Part III, 42, pp. 13-21, (1993).
    • [9] Maki H, Sundram P and Balachandran K, On generalized homeomorphisms in topological spaces, Bull. Fukuoka Univ. Ed. Part III, 40, pp. 13-21,...
    • [10] Mashhour A. S, Abd. El-Monsef M. E and El-Deeb S. N, On precontinuous and weak precontinuous mappings, Proc. Math. Phys, Soc. Egypt,...
    • [11] Njastad O, On some classes of nearly open sets, Pacific J. Math. 15, pp. 961-970, (1965).
    • [12] Malghan S. R, Generalized closed maps, J. Karnataka Univ. Sci., 27, pp. 82-88, (1982).
    • [13] Rajesh N and Ekici E, On a new form of irresoluteness and weak forms of strong continuity (submitted).
    • [14] Rajesh N and Ekici E, On g e-locally closed sets in topological spaces. Kochi. J of Math. Vol.2 (to appear), (2007).
    • [15] Rajesh N and Ekici E, On g e-continuous mappings in topological spaces. Proc. Inst. Math. (God. Zb. Inst. Mat.)., Skopje (to appear).
    • [16] Rajesh N and Ekici E, On a decomposition of T1/2-spaces, Math. Maced. (to appear).
    • [17] Stone M, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41, pp. 374-481, (1937).
    • [18] Sundaram P, Studies on generalizations of continuous maps in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore (1991).
    • [19] Veera Kumar M. K. R. S, gb-closed sets in topological spaces, Bull. Allahabad Math. Soc., 18, pp. 99-112, (2003).
    • [20] Veera Kumar M. K. R. S, Between g*-closed sets and g-closed sets, Antarctica J. Math, Reprint.
    • [21] Veera Kumar M. K. R. S, #g-semi-closed sets in topological spaces, Antarctica J. Math, 2(2), pp. 201-222, (2005).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno