Ir al contenido

Documat


Fuzzy graphs in fuzzy neural networks

  • Kalathodi, Sameena [1] ; Sunitha, M. S. [1]
    1. [1] National Institute Of Technology

      National Institute Of Technology

      Japón

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 28, Nº. 3, 2009, págs. 239-252
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172009000300005
  • Enlaces
  • Resumen
    • In this paper we observe that, the fuzzy neural network architecture is isomorphic to the fuzzy graph model and the output of a fuzzy neural network with OR fuzzy neuron is equal to the strength of strongest path between the input layer (particular input neuron/neurons) and the out put layer(particular output neuron). We explain this result through an example, which describes the marketability of text books of kindergarten classes.

  • Referencias bibliográficas
    • Citas [1] Mordeson. J. N, Nair. P. S, Fuzzy Graphs and Fuzzy Hyper Graphs, Physica-Verlag, (2000).
    • [2] A. M Ibrahim, Introduction to Applied Electronics, Prentice Hall Of India, (1999).
    • [3] L. H Tsoukalas, R. E Uhrig, fuzzy and Neural Approaches in Engineering, John Wiley & Sons, (1997).
    • [4] S. Rajesekaren, G. A Vijayalakshmi Pai, Neural Networks, Fuzzy Logic and Genetic Algorithms, Synthesis and Applications, Prentice- Hall...
    • [5] Timothy J Ross , Fuzzy Logic with Engineering Application, Mc GrawHill, (1997).
    • [6] Jang. J. S. R., Sun. C. T, Mizutani. E, Neuro - Fuzzy and soft computing, Prentice - Hall upper saddle River, N J, (1997).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno